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Abstract: In this paper, an inequality of Simpson type for quasi-convex mappings is proved. The constant in the classical
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1. Introduction

Suppose f : [a, b] → R, is fourth times continuously differentiable mapping on (a, b) and
∥∥∥f (4)

∥∥∥
∞

:=

sup
x∈(a,b)

∣∣∣f (4) (x)
∣∣∣ < ∞ . The following inequality

∣∣∣∣∣∣
b∫

a

f (x) dx− (b− a)

6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]∣∣∣∣∣∣ ≤ (b− a)5

2880

∥∥∥f (4)
∥∥∥
∞

(1)

holds, and it is well known in the literature as Simpson’s inequality. It is well known that if the mapping f is

neither four times differentiable nor is the fourth derivative f (4) bounded on (a, b), then we cannot apply the

classical Simpson quadrature formula.

In [10], Pečarić and Varošanec, obtained some inequalities of Simpson’s type for functions whose n-th derivative,

n ∈ {0, 1, 2, 3} is of bounded variation, as follow:
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Theorem 1.1.
Let n ∈ {0, 1, 2, 3}. Let f be a real function on [a, b] such that f (n) is function of bounded variation. Then

∣∣∣∣∣∣
b∫

a

f (x) dx− (b− a)

6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]∣∣∣∣∣∣ ≤ Cn (b− a)n+1
b∨
a

(
f (n)

)
, (2)

where,

C0 =
1

3
, C1 =

1

24
, C2 =

1

324
, C3 =

1

1152
,

and
∨b

a

(
f (n)

)
is the total variation of f (n) on the interval [a, b].

Here to note that, the inequality (2) with n = 0, was proved in literature by Dragomir [5]. Also, Ghizzetti and

Ossicini [9], proved that if f ′′′ is an absolutely continuous mapping with total variation
∨b

a (f), then (2) with

n = 3 holds.

In recent years many authors were established several generalizations of Simpson inequality for mappings of

bounded variation, Lipschitzian, monotonic, and absolutely continuous mappings via kernels, for refinements,

counterparts, generalizations and several Simpson’s type inequalities see [4]–[16].

The notion of quasi-convex functions generalizes the notion of convex functions. More precisely, a function

f : [a, b] → R, is said quasi-convex on [a, b] if

f (λx+ (1− λ) y) ≤ sup {f (x) , f (y)} ,

for all x, y ∈ [a, b] and λ ∈ [0, 1]. Clearly, any convex function is a quasi-convex function. Furthermore, there

exist quasi-convex functions which are not convex nor continuous.

Example 1.1.
The floor function floor(x) = ⌊x⌋, is the largest integer not greater than x, is an example of a monotonic increasing
function which is quasi-convex but it is neither convex nor continuous.

In the same time, one can note that the quasi-convex mappings may be not of bounded variation, i.e., there exist

quasi-convex functions which are not of bounded variation. For example, consider the function f : [0, 2] → R,

defined by

f (x) =

 x sin
(
π
x

)
, x ̸= 0

0, x = 0
,

therefore, f is quasi-convex but not of bounded variation on [0,2]. Therefore, we cannot apply the above

inequalities. For recent inequalities concerning quasi-convex mappings see [1]–[4].
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In this paper, we obtain an inequality of Simpson type via quasi-convex mapping. This approach allows us to

investigate Simpson’s quadrature rule that have restrictions on the behavior of the integrand and thus to deal

with larger classes of functions. In general, we show that our result is better than the classical inequality (1).

2. Inequalities of Simpson’s type for quasi-convex functions

In order to prove our main results, we start with the following lemma:

Lemma 2.1.
Let f ′′′ : I ⊆ R → R be an absolutely continuous mapping on I◦, where a, b ∈ I with a < b. If f (4) ∈ L[a, b], then
the following equality holds:∫ b

a

f (x) dx− (b− a)

6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]
= (b− a)5

∫ 1

0

p (t) f (4) (ta+ (1− t) b) dt, (3)

where,

p (t) =


1
24
t3

(
t− 2

3

)
, t ∈

[
0, 1

2

]
1
24

(t− 1)3
(
t− 1

3

)
, t ∈

(
1
2
, 1
] .

Proof. We note that

I = (b− a)5
∫ 1

0

p (t) f (4) (ta+ (1− t) b) dt =
(b− a)5

24

∫ 1/2

0

t3
(
t− 2

3

)
f (4) (ta+ (1− t) b) dt

+
(b− a)5

24

∫ 1/2

0

(t− 1)3
(
t− 1

3

)
f (4) (ta+ (1− t) b) dt.

Integrating by parts, we get

I = 1
24
t3

(
t− 2

3

) f (3) (ta+ (1− t) b)

a− b

∣∣∣∣1/2
0

−
(
1
6
t3 − 1

12
t2
) f ′′ (ta+ (1− t) b)

(a− b)2

∣∣∣∣1/2
0

+
(
1
2
t2 − 1

6
t
) f ′ (ta+ (1− t) b)

(a− b)3

∣∣∣∣1/2
0

−
(
t− 1

6

) f (ta+ (1− t) b)

(a− b)4

∣∣∣∣1/2
0

+

∫ 1/2

0

f (ta+ (1− t) b)

(a− b)4
dt+ 1

24
(t− 1)3

(
t− 1

3

) f (3) (ta+ (1− t) b)

a− b

∣∣∣∣1
1/2

−
(
1
6
t3 − 5

12
t2 + 1

3
t− 1

12

) f ′′ (ta+ (1− t) b)

(a− b)2

∣∣∣∣1
1/2

+
(
1
2
t2 − 5

6
t+ 1

3

) f ′ (ta+ (1− t) b)

(a− b)3

∣∣∣∣1
1/2

−
(
t− 5

6

) f (ta+ (1− t) b)

(a− b)4

∣∣∣∣1
1/2

+

∫ 1

1/2

f (ta+ (1− t) b)

(a− b)4
dt

Setting x = ta+ (1− t) b, and dx = (a− b)dt, gives

(b− a)5 · I =

∫ b

a

f (x) dx− (b− a)

6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]
,

which gives the desired representation (3).
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Therefore, we may state our main result as follows:

Theorem 2.1.
Let f ′′′ : I ⊆ R → R be an absolutely continuous mapping on I◦ such that f (4) ∈ L[a, b], where a, b ∈ I with a < b.

If
∣∣∣f (4)

∣∣∣ is quasi-convex on [a, b], then the following inequality holds:

∣∣∣∣∫ b

a

f (x) dx− (b− a)

6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]∣∣∣∣
≤ (b− a)5

5760

[
sup

{∣∣∣f (4) (a)
∣∣∣ , ∣∣∣∣f (4)

(
a+ b

2

)∣∣∣∣}+ sup

{∣∣∣∣f (4)

(
a+ b

2

)∣∣∣∣ , ∣∣∣f (4) (b)
∣∣∣}]

. (4)

Proof. From Lemma 2.1, and since f is quasi-convex, we have

∣∣∣∣∫ b

a

f (x) dx− (b− a)

6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]∣∣∣∣
=

∣∣∣∣(b− a)5
∫ 1

0

p (t) f (4) (ta+ (1− t) b) dt

∣∣∣∣
≤ (b− a)5

∫ 1

0

|p (t)|
∣∣∣f (4) (ta+ (1− t) b)

∣∣∣ dt
= (b− a)5

∫ 1/2

0

|p (t)|
∣∣∣f (4) (ta+ (1− t) b)

∣∣∣ dt
+ (b− a)5

∫ 1

1/2

|p (t)|
∣∣∣f (4) (ta+ (1− t) b)

∣∣∣ dt
≤ (b− a)5

∫ 1/2

0

∣∣ 1
24
t3

(
t− 2

3

)∣∣ · sup{∣∣∣f (4) (b)
∣∣∣ , ∣∣∣∣f (4)

(
a+ b

2

)∣∣∣∣} dt

+ (b− a)5
∫ 1

1/2

∣∣ 1
24

(t− 1)3
(
t− 1

3

)∣∣ · sup{∣∣∣∣f (4)

(
a+ b

2

)∣∣∣∣ , ∣∣∣f (4) (a)
∣∣∣} dt

=
(b− a)5

5760

[
sup

{∣∣∣f (4) (a)
∣∣∣ , ∣∣∣∣f (4)

(
a+ b

2

)∣∣∣∣}+ sup

{∣∣∣∣f (4)

(
a+ b

2

)∣∣∣∣ , ∣∣∣f (4) (b)
∣∣∣}]

,

which completes the proof.

Corollary 2.1.
Let f as in Theorem 2.1.

1. If f is decreasing, then we have

∣∣∣∣∫ b

a

f (x) dx− (b− a)

6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]∣∣∣∣ ≤ (b− a)5

5760

[∣∣∣f (4) (a)
∣∣∣+ ∣∣∣∣f (4)

(
a+ b

2

)∣∣∣∣] . (5)

2. If f is increasing, then we have

∣∣∣∣∫ b

a

f (x) dx− (b− a)

6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]∣∣∣∣ ≤ (b− a)5

5760

[∣∣∣∣f (4)

(
a+ b

2

)∣∣∣∣+ ∣∣∣f (4) (b)
∣∣∣] . (6)

Corollary 2.2.

Let f as in Theorem 2.1. If f (4) is exits, continuous and
∥∥∥f (4)

∥∥∥
∞

:= sup
x∈(a,b)

∣∣∣f (4) (x)
∣∣∣ < ∞, then the inequality

(4) reduced to (1).
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Remark 2.1.
1- We note that the constants in (1) and (2) are improved.

2- The corresponding version of the inequality (4) for powers may be done by applying the Hölder inequality and
the power mean inequality.

Example 2.1.
Let f(x) = sinx, x ∈ [0, π

2
], then f(0) = 0, f(π

4
) = 1√

2
, f(π

2
) = 1. Now, by applying the classical Simpson’s

inequality (1), we get

∫ π
2

0

sin (x) dx =
π

12

[
f (0) + 4f

(π
4

)
+ f (1)

]
+

π5

32
· 1

2880
= 1.005600403.

However, by applying (4) or (6) since f is increasing on [0, π
2
], we get

∫ π
2

0

sin (x) dx =
π

12

[
f (0) + 4f

(π
4

)
+ f (1)

]
+

π5

32
· 1

2880
= 1.005114123.

Comparing with the exact value which is

∫ π
2

0

sin (x) dx = 1

we deduce that our result (6) is better than (1) for this example. So that, in general (4) can be better than (1).

3. Applications to Simpson’s Formula

Let d be a division of the interval [a, b], i.e., d : a = x0 < x1 < ... < xn−1 < xn = b, hi = (xi+1 − xi)/2 and

consider the Simpson’s formula

S (f, d) =

n−1∑
i=0

f (xi) + 4f (xi + hi) + f (xi+1)

6
(xi+1 − xi). (7)

It is well known that if the mapping f : [a, b] → R, is differentiable such that f (4) (x) exists on (a, b) and

M = sup
x∈(a,b)

∣∣∣f (4) (x)
∣∣∣ < ∞, then

I =

b∫
a

f (x) dx = S (f, d) + ES (f, d) , (8)

where the approximation error ES (f, d) of the integral I by the Simpson’s formula S (f, d) satisfies

|ES (f, d)| ≤ M

2880

n−1∑
i=0

(xi+1 − xi)
5. (9)

In the following we give a new estimation for the remainder term ES (f, d).
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Proposition 3.1.
Let f ′′′ : I ⊆ R → R be an absolutely continuous mapping on I◦ such that f (4) ∈ L[a, b], where a, b ∈ I with a < b.

If
∣∣∣f (4)

∣∣∣ is quasi-convex on [a, b], then in (8), for every division d of [a, b], the following holds:

|ES (f, d)| ≤ 1

5760

n−1∑
i=0

(xi+1 − xi)
5
[
sup

{
f (4) (xi) , f

(4)
(xi + xi+1

2

)}
+sup

{
f (4)

(xi + xi+1

2

)
, f (4) (xi+1)

}]
.

Proof. Applying Theorem 2.1 on the subintervals [xi, xi+1], (i = 0, 1, ..., n− 1) of the division d, we get

∣∣∣∣∣∣
xi+1∫
xi

f (x) dx− (xi+1 − xi)

6

[
f (xi) + 4f

(xi + xi+1

2

)
+ f (xi+1)

]∣∣∣∣∣∣
≤ (xi+1 − xi)

5
[
sup

{∣∣∣f (4) (xi)
∣∣∣ , ∣∣∣f (4)

(xi + xi+1

2

)∣∣∣}
+sup

{∣∣∣f (4)
(xi + xi+1

2

)∣∣∣ , ∣∣∣f (4) (xi+1)
∣∣∣}]

Summing over i from 0 to n− 1 and taking into account that
∣∣∣f (4)

∣∣∣ is quasi-convex, we deduce that

∣∣∣∣∣∣
b∫

a

f (x) dx− S (f, d)

∣∣∣∣∣∣ ≤ 1

5760

n−1∑
i=0

(xi+1 − xi)
5
[
sup

{∣∣∣f (4) (xi)
∣∣∣ , ∣∣∣f (4)

(xi + xi+1

2

)∣∣∣}
+sup

{∣∣∣f (4)
(xi + xi+1

2

)∣∣∣ , ∣∣∣f (4) (xi+1)
∣∣∣}] .

which completes the proof.

4. conclusion

For fourth times continuously differentiable mapping fon (a, b) and
∥∥∥f (4)

∥∥∥
∞

:= sup
x∈(a,b)

∣∣∣f (4) (x)
∣∣∣ < ∞, the classical

Simpson’s inequality holds. In this paper, we relax the conditions on Simpson’s inequality; namely, the proposed

inequality (4) holds if f ′′′ : I ⊆ R → R is an absolutely continuous mapping on I◦ such that f ′′′ ∈ L[a, b] and∣∣∣f (4)
∣∣∣ is quasi-convex on [a, b]. In general, the bound in (4) is better than that one in the classical Simpson’s

inequality (1), as shown in Example 1.
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