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1. Introduction and notation

In the recent years, a new attention has been given to reaction-diffusion problem which involve an integral over

the spatial domain of a function of the desired solution on the boundary conditions; see [1− 21]. The purpose

of this paper is to prove the existence and uniqueness of a solution for the following non linear reaction diffusion

problem with only integral conditions.

The plan of this paper is as follows. In section 2 we give some notations used through out the paper. Section 3

is devoted to statement of the problem. In section 4 we construct an approximate solution using finite element
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method. in section 5 we give some a priori estimates. Finally in the section 6 we prove the convergence and we

give the existence result where we prove the uniqueness and the continuous dependence of solution.

Let L2 (Ω) be the usual space of square integrable functions ; its scalar product is denoted by (., .) and its

associated norm by ∥.∥. We denote by C0 (Ω) the space of continuous functions with compact support in Ω.

Definition 1.1.
We denote by Bm

2 (Ω) called the Bouziani space, the Hilbert space defined of C0 (Ω) for the scalar product

(z, w)Bm
2 (Ω) =

∫
Ω

ℑm
x z.ℑm

x wdx, (1)

where

ℑm
x z =

∫
Ω

(x− ξ)m−1

(m− 1)!
z (ξ) dξ,

by the norm of the function z from Bm
2 (Ω) , the nonnegative number

∥z∥Bm
2 (Ω) =

(∫
Ω

(ℑm
x z)2 dx

) 1
2

< ∞, (2)

then the inequality

∥z∥2Bm
2 (Ω) ≤

(β − α)2

2
∥z∥2

B
m−1
2 (Ω)

, m ≥ 1, (3)

holds for every z ∈ Bm−1
2 (Ω) , and the embedding

Bm−1
2 (Ω) ↪→ Bm

2 (Ω) , (4)

is continuous .

Remark 1.1.
If m = 0, the space B0

2 (Ω) coincides with L2 (Ω) .

Definition 1.2.
We denote by L2

0 (Ω) the space consisting of elements z (x) of the space L2 (Ω) verifying

∫
Ω

xkz (x) dx = 0 (k = 0, 1) .

Let X be a space with a norm denoted by ∥.∥X

Definition 1.3.
(i) Denote by L2 (I,X) the set of all measurable abstract functions u (., t) from I into X such that

∥u∥L2(I,X) =

(∫
I

∥u (., t)∥2x dt
) 1

2

< ∞. (5)

(ii)Let C
(
Ī;X

)
be the set of all continuous functions u (., t) : Ī −→ X with

∥u∥C(Ī;X) = max ∥u (., t)∥X < ∞.
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Lemma 1.1.
Let be v : [0, T ] → H be a Bochner integrable function and let A ⊂ [0, T ] , any measurable subset, so: i) the
function ∥v (.)∥H : [0, T ] → H is Lebesgue integrable and we have,∥∥∥∥∫

A

v (t) dt

∥∥∥∥
H

≤
∫
A

∥v (t)∥H dt, (6)

ii) for each φ ∈ H, the function (v (.) , φ)H : [0, T ] → R is Lebesgue integrable and we have,(∫
A

v (t) dt, φ

)
H

=

∫
A

(v (t) , φ)H dt. (7)

Lemma 1.2.
Let M be a linear closed subspace from a Hilbert space H. So for every h ∈ H, there exists a unique u ∈ M such
that:

∥h− u∥H = min
v∈M

∥h− v∥H , (8)

the element u is called the orthogonal projection of h on M relatively to the inner product (., .) and we note
u = PMh. Furthermore, we have the following Pythagorean relation

∥h∥2H = ∥PMh∥2H + ∥h− PMh∥2H . (9)

Theorem 1.1 (Cauch- Schwarz inequality).
Let be f and g two functions of L2 (Ω) ; so

f.g ∈ L1 (Ω) ,

and ∫
Ω

|f.g| ≤ ∥f∥L2 . ∥g∥L2 . (10)

Theorem 1.2 (The Cauchy inequality).
Let be a, b ∈ R, and every ε > 0, we have

|ab| ≤ ε

2
a2 +

1

2ε
b2.

Lemma 1.3 (Gronwall lemma).
Let h (t) and y (t) be two real integrable functions on the interval I, h (τ) nondeceasing , and c a positive constant
if

y (t) ≤ h (t) + c

∫ t

0

y (τ) dτ ∀t ∈ I,

then

y (t) ≤ h (t) ect ∀t ∈ I.

Definition 1.4.
We call a nonlinear differential system the system of the form

·
X (t) = F [X (t)] (11)

t is a real

X (t) =


x1 (t)
x2 (t)

.

.

.
xn (t)

 , F (t) =


f1 (t)
f2 (t)

.

.

.
fn (t)

 ,

where fi are continuous functions.
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Definition 1.5.
Let be

X (t) :
I ⊂ R −→ Rn

x −→ x (t)
, (12)

X is the solution of the system (11) , if X is derivable and continuous function, for every each t ∈ I, X (t) ∈ I

and
·
X (t) = F (X (t)) .

Theorem 1.3 (The unicity of solution).
We suppose that F is derivable continuous function on E ⊂ Rn . So for every each initial condition for t0 ∈ I
and X0 ∈ E the solution of the system (11) if it exists it is unique.

Theorem 1.4 (Local existence of solution).
Let be t0 ∈ R and X0 ∈ Rn . If F is derivable continuous on X0, it exists h > 0 such that the solution of the
system (11) verifying X (t0) = X0 exists on the interval [t0, t0 + h] .

Theorem 1.5 (Global existence of solution).
If F is derivable continuous function onRn and if the solution of the system (11) verifying X (0) = X0 is bounded
on the interval which it exists so the solution exists on I = [0,+∞] .

See artical [18] .

2. Statement of the problem

Let be the problem

∂u (x, t)

∂t
− α

∂2u (x, t)

∂x2
− (u (x, t))p = f (x, t) , (13)

with the initial condition

u (x, 0) = u0, (14)

and the boundary integral conditions 
∫ 1

0
u (x, t) dx = 0∫ 1

0
xu (x, t) dx = 0

, (15)

with t ∈ [0, T ], T < ∞ , α ∈ R∗
+, p ∈ N∗, x ∈ [0, 1] .

Through the paper, we will make the following assumptions:

(H1) : f ∈ L2
(
0, T ;B1

2 (0, 1)
)
, (H2) : u0 ∈ V where V is defined in the following way

V =

{
v ∈ L2 (0, 1) :

∫ 1

0

v (x) dx =

∫ 1

0

xv (x) dx = 0

}
. (16)

Since V is the null space of the continuous linear mapping

g : L2 (0, 1) −→ R2,Φ −→ g (Φ) =

(∫ 1

0

Φ(x) dx,

∫ 1

0

xΦ(x) dx

)
;
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it is closed linear subspace of L2 (0, 1), consequently V is a Hilbert space for (., .). Moreover for a given function

w (x, t) , the notation w (t) is used for the same function considered as an abstract function of the variable t. (H3)

: f (t, w) ∈ L2 (0, 1) for each (t, w) ∈ I × L2 (0, 1) and the following Lipschitz condition

∥f (t, w)− f (t′, w′)∥B1
2(0,1)

≤ M
[
|t− t′|

(
1 + ∥w∥B1

2(0,1)
+ ∥w′∥B1

2(0,1)

)
+ ∥w − w′∥B1

2(0,1)

]
.

Definition 2.1.
A weak solution of problem (13)− (15) means a function

u : [0, T ] −→ L2 (0, 1)

such that

(i) u ∈ L2
(
0, T ;B1

2 (0, 1)
)
,

(ii) u has a strong derivative
du

dt
∈ L2

(
0, T ;B1

2 (0, 1)
)
, (iii) u (0) = u0, (iv) The identity :

(
du (t)

∂t
, v

)
B1

2(0,1)

+ α (u (t) , v)− (up (x, t) , v)B1
2(0,1)

= (f (x, t) , v) .

3. Construction of an approximate solution

Let φ1, φ2, ..., φN , ... be a Hilbertian basis of V , such that we devise [θ, β] on N + 1 parts (N ∈ N∗) and we pose

h =
1

N + 1
, ti = ih , i = 0, 1, 2, ..., N + 1.

We define functions (φi) by

φi (x) =



x− xi−1

xi − xi−1
, xi−1 ≤ x ≤ xi,

x− xi

xi+1 − xi
, xi ≤ x ≤ xi+1,

0, ailleurs.

For every each functions (φi) are of degree 1 with φi (xj) = δij .

Let (Vn) the subspace from V generated by the first n elements of the basis. We have to find for each n ∈ N∗,

the approximate solution which has the following form.

un (x, t) =

n∑
i=1

gin (t)φi (x) , (x, t) ∈ (0, 1)× [0, T ] , (17)

where gin ∈ H1 (0, T ) are unknown functions for the moment. As we have that u0 ∈ V and Vn is a closed subspace

from V, we can define in a unique way u0
n by

u0
n = PVnu

0, (18)
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where PVn is define in lemma (1) . By the virtue of the density of ∪Vn in V it follows that

u0
n −→ u0 in V if n −→ ∞. (19)

We note by
(
g0in

)
the coordinates of u0

n in the basis (φi)
n
i=1 of Vn that is

u0
n =

n∑
i=1

g0inφi, (20)

so, we have to find

un ∈ H1 (0, T ;Vn) (21)

solution of the differential system

(
dun

dt
, φj

)
B1

2(0,1)

+ α (un, φj)− (up
n, φj)B1

2(0,1)
= (f (x, t) , φj)B1

2(0,1)
, (22)

un (0) = u0
n, (23)

By replacing un by (17) and by using the following notations

αij = (φi, φj)B1
2(Ω) , A = (αij)1≤i,j≤n ,

Bij = (φi, φj) , B = (Bij)1≤i,j≤n ,

Cj = (up
n, φj)B1

2(0,1)
, C = (Cj)1≤j≤n,

Fj (t) = (f, φj)B1
2(0,1)

,
−−→
F (t) = (Fj (t))

n
j=1 ,

and

−−−→
gn (t) = (gin (t))ni=1 ,

−→
g0n =

(
g0in

)n
i=1

.

The system (22) can be written as follows

A

−−→
dgn
dt

+ αB−→gn + C =
−−→
F (t), (24)

which is a nonlinear differential system.

We easily prove that A is regular matrix, and by virtue definition (1.4), (1.5) and Theorems (1.3) , (1.4) and (1.5),

so the system (24) has a unique solution −→gn ∈
[
H1 (0, T )

]n
.

Lemma 3.1.
For every n ≥ 1, the problem (22)− (23) has a unique solution un ∈ H1 (0, T ;Vn) which has the form (17) .
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4. A-priori estimates for approximations

Lemma 4.1.
For every n ∈ N∗ functions un ∈ H1 (0, T ;Vn) solutions of (22) verify

∫ t

0

∥un∥2 dτ ≤ K

2α− 1− p

2

, (25)

and ∫ t

0

∥∥∥∥dun

dt

∥∥∥∥2

B1
2(0,1)

dτ ≤ L, (26)

where Kand L are two positive constants such that,

α >
1

2
+ p.

Proof. Multiplying the integral identity (22) by gjn (t) and summing up for j = 1, ..., n and integrating the

resulting over (0, t) , we obtain

1

2
∥un∥2B1

2(0,1)
+ α

∫ t

0
∥un∥2 dτ

=
∫ t

0
(f, un)B1

2(0,1)
dτ +

∫ t

0
(up

n, un)B1
2(0,1)

dτ +
1

2

∥∥u0
n

∥∥2

B1
2(0,1)

.
(27)

We have ∥∥u0
n

∥∥2

B1
2(0,1)

≤
∥∥u0

∥∥2

B1
2(0,1)

≤ 1

2

∥∥u0
∥∥2

, (28)

so

∥un∥2B1
2(0,1)

+ 2α
∫ t

0
∥un∥2 dτ

= 2
∫ t

0
(f, un)B1

2(0,1)
dτ + 2

∫ t

0
(up

n, un)B1
2(0,1)

dτ + 1
4

∥∥u0
∥∥2

,
(29)

hence, thanks to the Cauchy inequality (29)

∥un∥2B1
2(0,1)

+ 2α
∫ t

0
∥un∥2 dτ

≤
∫ t

0
∥f∥2

B1
2(0,1)

dτ +
∫ t

0
∥un∥2

B1
2(0,1)

dτ +
∫ t

0
∥up

n∥2
B1

2(0,1)
dτ

+
∫ t

0
∥un∥2

B1
2(0,1)

dτ +
1

4

∥∥u0
∥∥2

,

(30)

but we have

∥un∥2B1
2(0,1)

≤ 1

2
∥un∥2 ,

we get

∥un∥2B1
2(0,1)

+ (2α− 1)
∫ t

0
∥un∥2 dτ

≤
∫ t

0
∥f∥2

B1
2(0,1)

dτ +
1

4

∥∥u0
∥∥2

+
∫ t

0
∥up

n∥2
B1

2(0,1)
dτ,

(31)
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we have that ∫ t

0
∥up

n∥2
B1

2(0,1)
dτ =

∫ t

0

∥∥up−1
n · un

∥∥2

B1
2(0,1)

dτ

≤ 1

2

∫ t

0

∥∥up−1
n

∥∥2

B1
2(0,1)

dτ +
1

2

∫ t

0
∥un∥2

B1
2(0,1)

dτ

≤ 1

2

∫ t

0

∥∥up−1
n

∥∥2

B1
2(0,1)

dτ +
1

4

∫ t

0
∥un∥2 dτ,

(32)

substituting (32) in (31) we have

∥un∥2B1
2(0,1)

+

(
2α− 5

4

)∫ t

0
∥un∥2 dτ

≤
∫ t

0
∥f∥2

B1
2(0,1)

dτ +
1

4

∥∥u0
∥∥2

+
∫ t

0

∥∥up−1
n

∥∥2

B1
2(0,1)

dτ.
(33)

But ∫ t

0

∥∥up−1
n

∥∥2

B1
2(0,1)

dτ =
∫ t

0

∥∥up−2
n · un

∥∥2

B1
2(0,1)

dτ

≤ 1

2

∫ t

0

∥∥up−2
n

∥∥2

B1
2(0,1)

dτ +
1

2

∫ t

0
∥un∥2

B1
2(0,1)

dτ

≤ 1

2

∫ t

0

∥∥up−2
n

∥∥2

B1
2(0,1)

dτ +
1

4

∫ t

0
∥un∥2 dτ.

(34)

Since (34) so (33) can be written

∥un∥2B1
2(0,1)

+

(
2α− 1− 1

2
− 1

2

)∫ t

0
∥un∥2 dτ

≤
∫ t

0
∥f∥2

B1
2(0,1)

dτ +
1

2

∥∥u0
∥∥2

+
∫ t

0

∥∥up−2
n

∥∥2

B1
2(0,1)

dτ,
(35)

after p iteration we get

∥un∥2B1
2(0,1)

+
(
2α− 1− p

2

) ∫ t

0
∥un∥2 dτ

≤
∫ t

0
∥f∥2

B1
2(0,1)

dτ +
1

4

∥∥u0
∥∥2

+
∫ t

0

∥∥(un)
0
∥∥2

B1
2(0,1)

dτ,
(36)

so

∥un∥2B1
2(0,1)

+
(
2α− 1− p

2

) ∫ t

0
∥un∥2 dτ

≤
∫ t

0
∥f∥2

B1
2(0,1)

dτ +
1

4

∥∥u0
∥∥2

+
T

2
.

(37)

Let be

K =

∫ t

0

∥f∥2
B1

2(0,1)
dτ +

1

4

∥∥u0
∥∥2

+
T

2
, (38)

we get

∥un∥2B1
2(0,1)

≤ K, (39)

and ∫ t

0

∥un∥2 dτ ≤ K

2α− 1− p

2

, (40)

on the other hand multiplying (22) by
dgjn
dt

and sum up for j = 1, ..., n we obtain

∥∥∥∥dun

dt

∥∥∥∥2

B1
2(0,1)

+
α

2

d

dt
∥un∥2 =

(
f,

dun

dt

)
B1

2(0,1)

+

(
up
n,

dun

dt

)
B1

2(0,1)

, (41)

14
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integrating (41) over (0, t)

2
∫ t

0

∥∥∥∥dun

dt

∥∥∥∥2

B1
2(0,1)

dτ + α ∥un∥2

= 2
∫ t

0

(
f,

dun

dt

)
B1

2(0,1)

dτ + 2
∫ t

0

(
up
n,

dun

dt

)
B1

2(0,1)

dτ + α
∥∥u0

∥∥2
,

(42)

applying the Cauchy inequality, we get

2
∫ t

0

∥∥∥∥dun

dt

∥∥∥∥2

B1
2(0,1)

dτ + α ∥un∥2

= 2
∫ t

0

(
f,

dun

dt

)
B1

2(0,1)

dτ + 2
∫ t

0

(
up
n,

dun

dt

)
B1

2(0,1)

dτ + α
∥∥u0

∥∥2
,

(43)

so ∫ t

0

∥∥∥∥dun

dt

∥∥∥∥2

B1
2(0,1)

dτ + α ∥un∥2

≤
∫ t

0
∥f∥2

B1
2(0,1)

dτ + α
∥∥u0

∥∥2
+

∫ t

0
∥up

n∥2
B1

2(0,1)
dτ

, (44)

but we have ∫ t

0
∥up

n∥2
B1

2(0,1)
dτ =

∫ t

0

∥∥up−1
n · un

∥∥2

B1
2(0,1)

dτ

≤ 1

2

∫ t

0

∥∥up−1
n

∥∥2

B1
2(0,1)

dτ +
1

2

∫ t

0
∥un∥2

B1
2(0,1)

dτ

≤ 1

2

∫ t

0

∥∥up−1
n

∥∥2

B1
2(0,1)

dτ +
1

2
KT see equation (39)

≤ 1

2

∫ t

0

∥∥up−2
n · un

∥∥2

B1
2(0,1)

dτ +
1

2
KT

≤ 1

2

[
1

2

∫ t

0

∥∥up−2
n

∥∥2

B1
2(0,1)

dτ +
1

2

∫ t

0
∥un∥2

B1
2(0,1)

dτ

]
+

1

2
KT

≤ 1

2
· 1
2

∫ t

0

∥∥up−2
n

∥∥2

B1
2(0,1)

dτ +
1

2
· 1
2
·KT +

1

2
KT,

after p iteration we get ∫ t

0

∥up
n∥2

B1
2(0,1)

dτ ≤ T

(
1

2p+1
∥u0∥2 +K

(
1

2p
+

1

2

))
, (45)

substituting (45) in (44) we get

∫ t

0

∥∥∥∥dun

dt

∥∥∥∥2

B1
2(0,1)

dτ + α ∥un∥2

≤
∫ t

0
∥f∥2

B1
2(0,1)

dτ + α
∥∥u0

∥∥2
+ T

(
1

2p+1

∥∥(u)0∥∥2
+K

(
1

2p
+

1

2

))
.

(46)

Let be

L =

∫ t

0

∥f∥2
B1

2(0,1)
dτ + α

∥∥u0
∥∥2

+ T

(
1

2p+1
+K

(
1

2p
+

1

2

))
, (47)

so we have ∫ t

0

∥∥∥∥dun

dt

∥∥∥∥2

B1
2(0,1)

dτ ≤ L. (48)
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5. Convergence and existence result

Theorem 5.1.
There exist a function u ∈ L2 (0, T ;V ) with

du

dt
∈ L2 (0, T ;B1

2 (0, 1)
)
,

and a subsequence (unk )k ⊆ (un)n such that

unk ⇀ u in L2 (0, T ;V ) , (49)

and
dunk

dt
⇀

du

dt
in L2 (0, T ;B1

2 (0, 1)
)
, (50)

when n −→ ∞.

Proof. See article [3]

Theorem 5.2.
The limit function u from Theorem (5.1) is the unique weak solution to problem (13) − (15) in the sense of
definition (2.1) .

Proof. One : Existence . We have to show that the limit function u satisfies all conditions (i)−(iv) of definition

(2.1) . Obviously, in light of properties of function u the first two conditions are already seen. On the other hand,

from u (t) = u0 +
∫ t

0
Ψ(s) ds, t ∈ [0, T ], written in the proof of Theorem (5.1) , we have directly u (0) = u0, so the

initial condition is also fulfilled, now we have to see that integral identity obeyed by u, for this, writing (22) for

n = nk and integrating on [0, t] , it comes

∫ t

0

(
∂unk (s)

∂s
, φj

)
B1

2(0,1)

ds+ α
∫ t

0
(unk (s) , φj) ds

−
∫ t

0

(
up
nk

(s) , φj

)
B1

2(0,1)
ds

=
∫ t

0
(f (x, s) , φj)B1

2(0,1)
ds; ∀t ∈ [0, T ] , j = 1, ..., nk.

(51)

By performing a limit process k −→ ∞ in (51), we get owing (49) and (50)

∫ t

0

(
∂u (s)

∂s
, φj

)
B1

2(0,1)

ds+ α
∫ t

0
(u (s) , φj) ds−

∫ t

0

(
uP (s) , φj

)
B1

2(0,1)
ds

=
∫ t

0
(f (x, s) , φj)B1

2(0,1)
ds; ∀t ∈ [0, T ] , j = 1, ..., nk.

(52)

Differentiating this latter with respect to t we get

(
∂u (t)

∂t
, φj

)
B1

2(0,1)

+ α (u (t) , φj)

− (up (t) , φj)B1
2(0,1)

= (f (x, t) , φj)B1
2(0,1)

∀t ∈ [0, T ] , j ≥ 1.

(53)
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From where (iv) is obtained due the density of (∪nVn) in V . Thus, u weakly solves problem (13)− (14) . Two :

Uniqueness . Writing the problem (13)− (15) in the form

∂u (x, t)

∂t
− α

∂2u (x, t)

∂t2
= f (x, t, u (x, t)) , (54)

which

f (x, t, u (x, t)) = (u (x, t))p + f (x, t) . (55)

Let us (ũ, ů) two weak solutions of (54) we get

(
dũ (t)

∂t
, v

)
B1

2(0,1)

+ α (ũ (t) , v) = (f (ũ, x, t) , v)
B1

2(0,1)
, (56)

and (
dů (t)

∂t
, v

)
B1

2(0,1)

+ α (̊u (t) , v) = (f (̊u, x, t) , v)
B1

2(0,1)
, (57)

subtructing the identity (57) from (56) we get for v = ů− ũ

1

2

d

dt
∥(̊u− ũ) t∥B1

2(0,1)
+ α ∥(̊u− ũ) t∥ = f (t, ů)B1

2(0,1)
− f (t, ũ)B1

2(0,1)
, (58)

integrating (58) and putting u (t) = ů− ũ we have

∥u (t)∥2B1
2(0,1)

+ 2α
∫ t

0
∥u (τ)∥2 dτ = 2

∫ t

0
(f (τ, ů)− f (τ, ũ) , u)B1

2(0,1)
dτ,

≤ 2
∫ t

0
∥f (τ, ů)− f (τ, ũ)∥ · ∥u (τ)∥B1

2(0,1)
dτ,

≤ 2M
∫ t

0
∥u (τ)∥2B1

2(0,1)
dτ.

(59)

From where Gronwalls lemma yields ∥u (τ)∥2B1
2(0,1)

= 0 =⇒ ů = ũ ; So, we have the uniqueness of the solution.

Proposition 5.1.
The sequence (un)n totally converges to u in L2 (0, T ;V ) .

Proof. The key point is to reason by absurdity, so we suppose that (un) is not converging to u in L2 (0, T ;V )

then

∃ε ≥ 0, ∃v ∈ L2 (0, T ;V ) , ∃ (uξ)ξ ⊂ (un)n :∣∣∣∫ T

0
(uξ (t)− u (t) , v (t)) dt

∣∣∣ ≥ ε, ∀v,
(60)

but (uξ)ξ is bounded in L2 (0, T ;V ) , consequently we can construct a subsequence
(
uξj

)
which weakly converges

in L2 (0, T ;V ) towards a certain element w ∈ L2 (0, T ;V ) , and while reasoning exactly as for the function u from

the theorem (5.1) , we prove that u is another solution for the problem (13) − (15) , which implies,taking into

account uniqueness in the problem in question, that w is none other than u, so

lim
ξ−→∞

∫ T

0

(uξ (t)− u (t) , v (t)) dt = 0,
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which is in contradiction with (60), thus

un ⇀ u in L2 (0, T ;V )

Theorem 5.3.
Let be u0, u0

∗ ∈ V, f, f∗ ∈ L2
(
O, T ;B1

2 (0, 1)
)
, and let u and u∗ be the corresponding weak solutions satisfying

assumptions (H1)− (H3) , if the following inequality

∥f (t, v)− f∗ (t, w)∥B1
2(0,1)

≤ a (t) + b ∥v − w∥B1
2(0,1)

, ∀t ∈ I, ∀v, w ∈ V, (61)

holds for some continuous nonnegative a (t) ∈ I and some constant b ≥ 0 we have the estimate

∥u− u∗∥2B1
2(0,1)

≤
(∥∥u0 − u0

∗
∥∥2

B1
2(0,1)

+

∫ t

0

a2 (τ) dτ

)
e(2b+1)t. (62)

Proof. We take the difference identities (56)− (57) corresponding to u, u∗ and f, f∗

∥u− u∗∥2B1
2(0,1)

+ 2α
∫ t

0
∥u (τ)− u∗ (τ)∥2 dτ

≤
∥∥u0 − u0

∗
∥∥2

B1
2(0,1)

+2
∫
∥f (τ, u)− f∗ (τ, u∗)∥B1

2(0,1)
· ∥u (τ)− u∗ (τ)∥B1

2(0,1)
dτ,

(63)

applying the elementary algebraic inequality

2αβ ≤ α2 + β2; ∀α, β ∈ R,

to the second term in the right hand side, we derive

∥u− u∗∥2B1
2(0,1)

+ 2α
∫ t

0
∥u (τ)− u∗ (τ)∥2 dτ

≤
∥∥u0 − u0

∗
∥∥2

B1
2(0,1)

+
∫ t

0
a2 (τ) dτ + (2b+ 1)

∫ 1

0
∥u (τ)− u∗ (τ)∥2B1

2(0,1)
dτ

, (64)

from which the estimate (62) follows by means of Gromwell’s lemma.

6. Numerical study with finite difference schemes

For the numerical solution of the considered problem (1.1)-(1.4) we apply the finite difference technique. First,

we take a positive integers N and M. We divide the intervals [0, 1] and [0, T ] into M and N subintervals of equal

lengths h = 1/M and k = T/N, respectively. By un
i , we denote the approximation to u at the ith grid-point and

nth time step. The Grid point (xi, tn) are given by xi = ih, i = 0, 1, 2, . . . , M, tn = nk, n = 0, 1, 2, . . . , N.

The notations un
i and fn

i , are used for the finite difference approximations of u(xi, tn),f(xi, tn) respectively.
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6.1. The forward time centred space (FTCS)

We can approximate the time derivative by the forward difference quotient,and use the centred second-order

approximation for the spatial derivative of second order in (3.1) to obtain :

un+1
i − un

i

k
= α

(
un
i−1 − 2un

i + un
i+1

h2

)
+ (un

i )
p + fn

i .

This scheme can be written as:

un+1
i = run

i−1 + (1− 2r)un
i + run

i+1 + k((un
i )

p + fn
i )

for i = 1, 2, ...,M − 1, n = 0, 1, ..., N, and r = αk/h2.

This procedure is explicit and and we do not need to solve nonlinear algebraic equations. Order of accuracy of the

scheme is O(k) + O(h2). We still have to determinates two unknowns un+1
0 and un+1

M+1, for this we approximate

integrals in (2.3) numerically by trapezoidal rule ( We have chosen this approximation since it is of the same,

second, order of accuracy in space as the methods used for the interior part of the problem ):

∫ 1

0

u
(
x, tn+1) dx =

h

2
(un+1

0 + 2

M−1∑
i=1

un+1
i + un+1

M ) = 0

∫ 1

0

xu
(
x, tn+1) dx =

h

2
(x0u

n+1
0 + 2

M−1∑
i=1

xiu
n+1
i + xMuM ) = 0.

Thus, we can write

un+1
0 + un+1

M = −2

M−1∑
i=1

un+1
i

x0u
n+1
0 + xMun+1

M = −2

M−1∑
i=1

xiu
n+1
i

Hence we have:

un+1
0 =

xMz1 − z2
Y

,

un+1
M =

z2 − x0z1
Y

,

where

z1 = −2

M−1∑
i=1

un+1
i

z2 = −2

M−1∑
i=1

xiu
n+1
i

and

Y = xM − x0 ̸= 0
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6.2. Numerical experiments

To test the above algorithm we use example with known analytical solution as follows :

Example 6.1.
We consider the following problem

∂u

∂t
− ∂2u

∂x2
− u3 = f(x, t), 0 < x < 1, 0 < t ≤ T, (65)

subject to the initial condition

u (x, 0) = cos(2πx), 0 ≤ x < 1, (66)

and the boundary integral conditions

∫ 1

0

u (x, t) dx = 0, 0 < t ≤ T, (67)

∫ 1

0

xu (x, t) dx = 0, 0 < t ≤ T, (68)

Where

f(x, t) = cos(2πx)(sin(t) + 4π2cos(t)− cos3(t)cos2(2πx)

Then the exact solution of the problem (6.1)-(6.4) is

u (x, t) = cos(2πx)cos(t). (69)

In Table 1 and Table 2 we present results with h = 0.05, 0.005 using the FTCS scheme for x = 0.1 and t =
0.01, 0.02, 0.03, ..., 0.1.

ti FTCS exact

0.01 0.81118183 0.80897654

0.02 0.81253938 0.80885520

0.03 0.81332861 0.80865296

... ... ...

0.1 0.81188905 0.80497528

Table 1. Some numerical results at x = 0.1 with h = 0.05 and r = 0.4

ti FTCS exact

0.01 0.80899850 0.80897654

0.02 0.80889228 0.80885520

0.03 0.80870046 0.80865296

... ... ...

0.1 0.80504396 0.80497528

Table 2. Some numerical results at x = 0.1 with h = 0.005 and r = 0.4
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