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 Abstract: 

 
In a thermodynamically isolated system, in order to obtain numerical approximations of the complex models, 
different model reduction techniques are applied to reduce the complex chemical reactions from high 
dimensional to low dimensional manifolds. These techniques not only reduce the system but also provide the 
complete description of reaction kinetics. These techniques include Quasi Steady State Approximations, 
Partial Equilibrium Technique, Intrinsic Low Dimensional Manifold Method, etc. Among all these 
techniques, Spectral Quasi Equilibrium Manifold Method is one of the most convenient way to find the initial 
approximations of slow invariant manifolds. Initial invariant grids completely describe the slow invariant 
manifolds which are obtained from the dissipative system. This method is applicable for high dimensional 
complex chemical reactions. 
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1. Introduction 
 

In chemical kinetics, we control the speed of chemical reaction by different conditions. It provides the information 
about chemical reaction mechanism and transition state. Besides this, if pressure temperature medium concentration 
is known we can measure the rate of change of reactants and products with respect to time. Chemical kinetics 
covers three features of a chemical reaction. In rate of reaction temperature, pressure, concentration, catalyst, and 
solvent are controlled. Simply chemical kinetics is the speed of chemical reaction (Anatol., 2005). Thermodynamics 
deals with the principle of conservation of energy. It mainly circulates around the system, surrounding and 
boundary. Boundary separate the system and surrounding which may be real or imaginary. The system may be 
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open, isolated and closed. Chemical kinetics challenges and exploits area in which chemistry, mathematics, physics, 
and chemical engineering are covered. Basically, chemical kinetics is a complex combination of different fields.  

Chemistry wants math and arithmetic craving demonstrating for its arrangement. The connection among Math’s and 
chemistry ascends in the eighteenth - twentieth hundreds of years. Lavoisier and Dalton was known as pioneers of 
substance stoichiometry. There are various parts of chemistry and chemical energy is the hereditary piece of 
science. It has huge applications in the logical field. From another side, the creator of matrices theory ‘Arthur 
Cayley’ applied the theory of chemical isomers in the 1860s-1870s, then in mid of 19th -century various laws of 
chemical kinetics were developed some of them are  

• The mass-action law by Guldberg and Waage.  

• The “normal classification of reactions” by van’t Hoff.  

• The quasi-steady-state principle by Chapman and Bodenstein.  

• Theory of chain reactions by Semenov and Hinshelwood.  

 

Every one of these above standards depend on a strong numerical establishment of the arithmetical and differential 
condition. In 1950-60s the very fast reactions were studied by relaxation technique (Eigen). (book Chemical 
Engineering) 

The rate-determining step is frequently not self-evident when a reaction mechanism has several steps of comparable 
rates. However, in some steps there is an Intermediate. An intermediate is a species that is neither one of the 
reactants, nor one of the products. The steady-state approximation is actually used to find the Rate Law. The 
Strategy depends on the approximation that one intermediate in the reaction mechanism is burned-through as fast as 
it is created. The concentration of the reaction remains the same in a  desired duration . At the point when a 
response includes at least one or more intermediates, the concentration of one of the intermediates remains constant 
at some stage of the reaction. Thus, the system has reached a steady-state. The convergence of one of the 
intermediates, varies with time. 

Gibbs rule was introduced by Josiah Willard Gibbs from 1875-1878. The general form of the rule is given as,                                                                

                                                    2F C P                                                                                                  (1) 

Equivalently, Gibbs Rule can also be written as                                               

                                                  ( )kc cN N Rank B                                                                                                 (2) 

where kcN represents the number of key components (Degree of Freedom), cN  is the total number of species 
involved in a chemical reaction and ( )Rank B is the rank of balancing matrix.  
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2. Model Reaction Scheme 
 

2.1 Lyapunov Function 
 
The Lyapunov function is a scalar function that is used to determine the constancy of an equilibrium point of 
ODE’s. The Lyapunov function is symbolized by  G  and can be characterized for a closed system as                                               

                                                        
1

ln( / ) 1  
n

eq
j j j

j
G c c c



                                                                                  (3) 

 2.2 Quasi-Equilibrium Manifold 
 
Mathematically, QEM can be defined as:                             

                                                  
min

( , )    1,...,    i i i

G
m c k

BC const



   
 

                                                                              (4) 

Here im  are slow variables and i are the reduced description having ic  elements.  The general idea of QEM is 
represented as in figure given below: 
 

                                   

Figure (1): blue line represents initial state while the red line denotes the QEM. (Mahdi et, al) 

 

2.3      Spectral Quasi-Equilibrium Manifold 
 
In SQEM, left slowest eigenvector corresponding to the Jacobian matrix is selected. So, the solution obtained by 
selecting left slowest eigenvector of the Jacobian matrix corresponding to the smallest absolute eigenvalue is called 
Spectral Quasi-Equilibrium Manifold. (E. Chiavazzo, A.N Gorban, and I.V Karlin). 
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2.4        1D Quasi-Equilibrium Grid Construction Method 
 

Since our interest is to find 1D Quasi-Equilibrium Manifold. For this, we select a node 0c  which is the equilibrium 
point related to that manifold which we have to assume. We will move towards further node points 1 2 3, , ..... nc c c c
lying on this manifold. Now, in order to find next node 1c , following formula will be used. i.e. 

                                                            1 0 0 
ˆc  c c                                                                                                  (5) 

By using above, we can find the next node up to 1nc   of Quasi-Equilibrium Manifold if nc  is known. Now the shift 
vector nc  used in equation (3.3) can be defined a       

n

n i i
i

c p                                                                                                                                      (6) 

Here,  ip is the 1n  dimensional null space basis of molecular balancing matrix B  and the unknown variables

i ’s can be calculated as 

                                     1

2

1

( , ) ( , ( )) 1, 2..., 1
k

j i i j i
i
k

i
i

t p t G c j k

 





     







                                                                                  (7) 

Where   is a small parameter. 

Now E  matrix can be achieved by combining slowest left Eigenvector m  and the balancing matrix B  as follows: 

                                                  E   
m
B
 

  
 

                                                                                                           (8) 

Now consider that the node point xc is very near to QEM and xc  be very lesser such that G  which is the 
gradient of G can be estimated to 1st order as: 
                                               1( ) ( ) ( )x x x xG c G c H c c                                                                      (9) 

Here, ( )xH c symbolizes the enthalpy which is the 2nd derivative of the Lyapunov function G and is equal to   

                                                   
2 ( )( )  x

x
i j

G cH c
x y

 
  

   
                                                    (10) 

By substituting equation (3.4) and Equation (3.8) in equation (3.7), we will get the following: 

1
( , ) ( , ( ))      1,2,... 1

k

j i i j x
i

t p t G c j k


                                                                                          (11) 

Note that the right-hand side of the above equation will be zero if the node points xc  belong to QEM. 
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Since, we know that in order to find out the solution of n  number of unknown variables, the system of ODE’s need 
n  number of equations. But here in equation (3.11), we have k unknowns and 1k   equations. Therefore, we don’t 
have proper information about grid spacing. To overcome this problem, we fix the given space as: 

                     1

( , ) ( , ( ))         1, 2,... 1

                      

k

j i i j x
i

x

t p t G c j k

c



 


      

 


                                                                       (12) 

Here, xc  represents the Euclidian norm of the vector xc . Also   is a small parameter. By choosing a small 
value of this parameter, the accuracy will be clear.  

Now by choosing  ip as orthonormal basis of the above space, the above-transformed system (3.12) can be written 
as: 

                     1

2 2

1

( , ) ( , ( ))         1, 2,... 1
 

                     

k

j i i j x
i
k

i
i

t p t G c j k

 






     


 





                                                  (13) 

The system (3.13) is the required model. Node points finding from (3.13) are known as QEG. By choosing these 
node points, we will get all the desired forward and backward node points in both directions. 

Note that in QEG, the equilibrium point is chosen as the initial point for the construction. i.e. eq oc c  

                                  

Figure 2:  General idea to proceed from one node point xc  to next node point 1xc  .(Chiavazzo., I.V. Karlin (2007)). 

We now distinguish those trajectories that move along the fast and slow direction. 
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Figure 9: Fast and slow trajectories moving towards the equilibrium point.  
(Chiavazzo, E., Gorban, A. N., and Karlin, I. V., 2007 

 

3. Working Example: 
 

Further explain the above techniques we consider an example, let us suppose the general parallel adsorption 
mechanism of two steps reversible  

1

2

1

2

1

0.5

          

   

 
k

k

k

k
AZ B A

A Z AZ

B Z













 

 



 
                                                                                                                                (14) 

 

Figure 3: In this figure A and B are reactants and AB is a product. Z and AZ are intermediates. 

3.1   Trees and Nodes: 
 

Since it is two-step reversible chemical reaction. So, by Cayley’s formula, the total number of trees will be four. 
While total forward and reverse trees will be equal i.e. two. Also, the total number of combined trees will be zero in 
this case. 
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Figure 11: represents the forward spanning trees of the node Z and AZ. 

                                                            

                                  Figure 4: represents the reverse spanning trees of the node Z and AZ. 

Now, by finding its edge weight, we have forward reaction weights given as 

1 1
1 1

2 2
2 2

A Z
A

Z Z

B AZ
B

AZ AZ

K CW K C

K CW K C

 
 

 
 

 
 

 
 

  

  

                                                           (15) 

And reverse reaction weights will be equal to 

1 1
1 1

2 2
2 2

AZ

AZ AZ

AB Z
AB

Z Z

KW K

K CW K C

 
 

 
 

 
 

 
 

  

  

                                      (16) 

 Now by finding the weight of the spanning trees of node Z and AZ , we will get 

                   2 1

1 2

Z

AZ

W w w

W w w

 

 

 

 
                                                                  (17) 

Thus the total weight of spanning trees of whole graph will be 

Z AZW W W                                                (18) 

 

3.2    Mathematical Modeling  
 

In this two-step chemical reaction, five chemical components are involved (A, Z, AZ, B, AB) which are formed by 
three chemical elements (A, Z and B). Besides this, we also define initial parameters i.e. 
 



  Bilal Ali, Sidra Jubair 
 

73 
 

                1 2 3 4 5, , , ,A c Z c AZ c B c AB c      

1 2 3 4 50.5, 0.1, 0.1, 0.4, 0.1eq eq eq eq eqc c c c c                                                      (19) 

Since we have a 5- dimensional matrices so we transform it into 2-dimensional metrics by defining a valid 
balancing equation given by the law of conservation of atoms. 

1 0 1 0 1
0 1 1 0 0
0 0 0 1 1

B
 
   
  

                                                      (20) 

Then stoichiometric vectors are calculated as: 

 
 

1

2

1, 1,1,0,0

0,1, 1, 1,1





  

  
                                                                                            (21) 

And the stoichiometric matrix    becomes: 

                                                  
1 1 1 0 0
0 1 1 1 1


  

    
                                                                                  (22) 

Now for kinetic equation, we have the following form 

2

1
i i

i
c R



                                                                                                       (23) 

i.e., the product of stoichiometric vectors ‘ i ’ and reaction rate’ iR ’. So by expanding the above system, we get: 

1 1 2 2  c R R                                                        (24) 

By substituting these values and then simplifying, we seek following five kinetic equations: 

1    

1 1 1 2 1 3

2 1 1 2 1 3 2 3 4 2 5 2

3 1 1 2 1 3 2 3 4 2 5 2

4 2 3 4 2 5 2

5 2 3 4 2 5 2

          

c k c c k c
c k c c k c k c c k c c

c k c c k c k c c k c c
c k c c k c c
c k c c k c c

  

    

    

  

  

  

    

    

  

  

                                            (25) 

Here ic  are derivative with respect to time and all ic ’s are variables and 

1

2

0.500

2.000

k

k








           1

2

1.000

0.500

k

k








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We can write all equations in matrix form as. 

  

1 1 2 1 31

1 1 2 1 3 2 3 4 2 5 22

3 1 1 2 1 3 2 3 4 2 5 2

4 2 3 4 2 5 2

5 2 3 4 2 5 2

k c c k cc
k c c k c k c c k c cc

c c k c c k c k c c k c c
c k c c k c c
c k c c k c c

 

   

     

  

  

    
  
     
         
    
  
      

                                     (26) 

Since the molecular or balancing matrix is the balance of A , Z and B . So we can write (26) as: 

    
1 0 1 0 1
0 1 1 0 0 .
0 0 0 1 1

A

Z

B

b
B b

b

  
     
     

                                                                                  (27) 

Also, each species of molecular matrix satisfies the law of conservation of mass, i.e., 

Bc Constant                                                                                          (28) 

By substituting values in (28), we get 

1

2

3

4

5

1 0 1 0 1
0 1 1 0 0 . =
0 0 0 1 1

A

Z

B

c
c b
c b

bc
c

 
                       
  

                                                              (29) 

By simplifying (29) and by  putting the values of all parameters i.e. 

1 2 3 4 50.5, 0.1, 0.1, 0.4, 0.1eq eq eq eq eqc c c c c                                                    (30) 

The equation (27) becomes: 

0.7
0.2
0.5

A

Z

B

b
b
b

   
      
     

                                        (31) 

So we can write it as: 

1 3 5

2 3

4 5

0.7
      0.2
      0.5

A

Z

B

c c c b
c c b
c c b

   

  
  

                                                                           (32) 
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Now By fixing 1c and 4c  and by putting all values we get the reduced form of the kinetic equation and it can be 
written in matrix form as: 

2
1 1 4 1 4

2
4 4 1 4 1

0.5 0.5 0.1
   1.5 1.1 1.5

c c c c c
F

c c c c c

     
  

    
                                                                            (33) 

 
Figure 5: Quasi-steady-state assumption in reduced equations of reaction in terms of 1c and 4c . 

 
3.3 Implementing 1D-SQEG Algorithm  
 

Now we will apply SQEGA method to our problem i.e. Consider the kinetic equations from equation (4.22), we 

have 

    

1 1 2 1 3

1 1 2 1 3 2 3 4 2 5 2

1 1 2 1 3 2 3 4 2 5 2

2 3 4 2 5 2

2 3 4 2 5 2

( ) i

k c c k c
k c c k c k c c k c c

J c c k c c k c k c c k c c
k c c k c c
k c c k c c

 

   

    

 

 

  
 
    
       
  
 
   

                                                          (34) 

Now measuring the Jacobian of above matrix by using mat lab, we get: 

0.1000   0.5000    0.5000        0         0
0.1000   0.7000    0.7000    0.0500   0.2000
   0.1000    0.7000   1.0000        0    0.2000
  0    0.2000   0.2000   0.0500    0.2000
   0   0.2000  

(

  0.20

)

00    0.0

J c

 



 


 

 500   0.2000

 
 
 
 
 
 
  

                                                 (35) 

0 10 20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

time

C
1,C

4

 

 
c1
c4
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Now we can find Eigen values 0J I   and Eigen vectors ( ) 0J I X   easily. But our task is to find the left 
slowest Eigenvector w.r.t Eigenvalues in order to implement the SQEM technique to this problem. For this, we 
measure its first left Eigenvalues of the above matrix (4.36) w.r.t mat lab, we have: 

 -1.6894      0         0         0               0
  0   0.2219      0         0               0
  0         0   -0.1387      0               0
  0         0         0    0.0000      0
  0         0   

 

      0         0              0.0000

 
 
 
 
 
 
  

                                                   (36) 

And its corresponding Eigenvectors by using mat lab: 

-0.0866   -0.1573    0.2272   -0.2662   -0.2662
-0.6212    0.1041    0.6279    0.2662    0.2662
 0.7554    0.2959    0.5400   -0.0000   -0.0000
 0.0247   -0.2893   -0.0677    0.5731    0.5731
-0.1882  

W 


  0.8906   -0.5078    0.3069    0.3069

 
 
 
 
 
 
  

                                                            (37) 

Now for left slowest Eigenvector, we have seen that 3 2 1/ / / / / /    . Hence left slowest Eigenvector 
corresponding to 3  will be: 

 0.2272   0.6279   0.5400   0.0677   0.5078Ls                                                       (38) 

Now defining the Lyapunov function as: 

     
1

ln( / ) 1
n

eq
j j j

j
G c c c



                                                                                 (39) 

Also, Gradient of Lyapunov function G  and its 2nd derivative H  will become: 

1 1

2 2

3 3

4 4

5 5

log( ) log( )
log( ) log( )

log( ) log( )
log( ) log( )
log( ) log( )

eq

eq

eq

eq

eq

c c
c c

G c c
c c
c c

 
 

 
    
 
 

  

                                                                                             (40) 

1

1

3

4

5

1    0      0      0      0
 0     1  0       0      0
 0     0    1     0       0
0 0 0 1 0
 0     0      0        0    1

c
c

H c
c

c

 
 
 
 
 
 
  

                                                                                 (41) 
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Now after that, we measure the next node points. In order to find the node points, we have following formula: 

1n n nc c c                                                                                            (42) 

Where, 
n

n i i
i

c p                                                                                           (43) 

Here in equation (43), i are the unknown variables which we have to find. To find the i ’s, we have the system 
2

1
2

2

1

( , ) ( , ( )) 1,2

0.001

j i i j i
i

i
i

t p t G c i







    






                                                                        (44) 

ip represent the null basis of the balancing matrix i.e. 

        ip null B                                                                                (45) 

 Calculating the null basis ip  using mat lab software package, we have: 

 
 
0.1241   0.5543   0.5543   0.4302   0.4302

0.6961   0.2603   0.2603   0.4358   0.4358
i

i

p

p

 




  

  
                                                             (46) 

Also it  is the null basis of matrix E , i.e. 

             ( )it null E                                                                                (47) 

Where 
Ls

E
B
 

  
 

                                                    (48) 

By putting values, we have: 
0.2272    0.6279    0.5400   0.0677   0.5078
1.0000      0    1.0000        0    1.0000
0    1.0000    1.0000        0         0
0         0         0    1.0000    1.0000

E

 
 
 
 
 
 

 

                                                      (49) 

And, 

 0.3198 0.6058 0.6058 0.2861 0.2861t                                                                  (50) 

Now by putting values of it  and ip  , we get 
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                           1 2

1 2

0.007519     0.03072
0.007519   0.03072

 
 

   
   

 

Now in order to find next point,  

                                         1 0 0c c c                                                                                                      (51) 

By using 1st value of 1 , 2  and ip  in equation (43), we get the value of 0c  that is equal to 

                       0 0.0205  0.0038  -0.0038  0.0166  -0.0166c                                                         (52) 

Substituting the values of  0c  and 0c  in equation (51), we will acquire the next forward node point 1c . Similarly, 
we repeat this whole method again and get all the possible forward node points 2 3, ,...., nc c c .  By plotting all node 
points, we will get 1-D approximate SQEM solution in the forward direction. 

 

Figure 6: The above figure shows the initial approximation of SQEM solution in the forward direction. 

 

Similarly, by using 2nd value of 1 . 2 and ip  in equation (4.45), we get the value of 0c  that is equal to  

                      0 0.0205  0.0038  -0.0038  0.0166  -0.0166c                                                                         (53) 

Similarly, we repeat this whole method again to get all the possible backward node points 2 3, ,...., nc c c .  By plotting 
all those node points, we will get 1-D approximate SQEM solution in reverse direction. 
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Figure 7: The above figure shows the initial approximation of SQEM solution in the backward direction. 

Combining all forward and backward node points with equilibrium points. We will get: 

 

Figure 8: The above figure shows the initial approximation of SQEM solution in both forward and backward direction. 

Now we will define the solution trajectories of the above-approximated solution of the SQEM solution: 
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Figure 9: represents the approximated solution of SQEM with solution trajectories lies nearer to the equilibrium point. 

 

Figure 10 (a): shows the direction of trajectories moving towards equilibrium point and (b) shows the 
 time taken by each trajectory to reach its equilibrium point 

 

4. Conclusion 
 

In this work two main goals are achieved, firstly the concept of trees and nodes of the chemical graph is presented 
with a suitable example by using Cayley's formula. Secondly, we have found the weights of spanning trees. After 
that, the graphical representation of computational methods (SQEM) is discussed in detailed to find the initial 
approximation for the slow invariant manifold of complex chemical reaction. Also, we have reduced the high 
dimensional problem to low dimensional by using Gibbs Rule and implement SQEM method to find 1-Dimensional 
Spectral Quasi-Equilibrium Manifold (SQEM) solution.  
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