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Abstract:  The aim of this paper is to present a new method called "Restriction Method for Approximating
Cube Roots", which helps students to find an approximate value for any cube root of any rational
number easily and simply. Also, we prove this method and we give some examples that enhance our

method.
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1. Introduction

Many methods were presented to find approximate values for cube roots of rational numbers [2, 6]. These methods
were built based on functions, sequences, series or derivatives...etc.; which are basic assumptions to other methods
[1, 5]. The presented method of finding approximate values for cube roots is very simple to be applied by students
in the preliminary stages. In particular, our method can be applied easily in comparison with other methods utilized

for the same purpose.

2. Restriction Method for Approximating Cube Roots

At the beginning of this section, we introduce some definitions that will be used to present our method and its proof.

Definition 2.1.
Let a € N, then a3 is called a Full Cube Number since a® = a * a * a.

e.g. 64 is a Full Cube Number for 4 since 64 = 4 x 4 x 4.
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Definition 2.2.
a3, b3 are two Successive Full Cube Numbers & 3 a,b suchthat: a,b € Nand b = a + 1 respectively.

e.g. 27,64 are two Successive Full Cube Numbers for 3, 4 respectively [3, 4].

Corollary 2.3 (New result).
Letx e Rand a,b € Nsuchthat b = a + 1 and a® < x < b3, then:

4x+a3+b3+2(a2+b2)—1+(a+b)(x—a3+#)

Vi~ (1)

2(a? +b%2+ab+x—a®+1)+3(a+b)

Proof. Since a® < x < b3, then a < /x < b. So; we can assume that:

5 a+b
Xx~— (2)

is the first approximation for i/x.

Thus;
(a + b)?
¥¥Tg
or
s~ _atb  Ax
Ver—5 “(a+b)? )
Now, since
b—a=1=>(Mh-a)?=1
b? +a?=2ab+1 (4)
1
b2+a2=2(ab+§)
a? + b? . 1
= + -
STy WYy
or
2__2+b2_ﬁ— b+_
T 2 Y75
a?+b*+1
a?+b*—ab=——= (5)
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By multiplying Eq.(5) by (a + b), we get:

(a +b)(a?+ b2 +1)
2

(a + b)(a? — ab + b?) =

(a+ b)(a? + b2 +1)

Sa 5
or
a+b _ a®+b?
2 ar+b2+1 ©)
Also, by adding (a? + b?) to Eq.(4) we get:
2a? +2b? =a’?+2ab+b?>+1=2(a?*+b?)=(a+b)*+1
(a+b)?> 1 a+b 1
24 pi=—— = 2+ p2=(a+b +
- a > 27¢ @*+b) | == *3@+0)
a’?+b?> a+b 1 a+b a®+b? 1
= = =+ = = —
a+b 2 2(a+Db) 2 a+b 2(a+b)
a+b 2a*+2b* -1 ;
2  2(a+b) ()
Moreover, by adding (ab) to Eq.(4) we get:
b? +ab+a?=1+3ab (8)

By multiplying Eq.(8) by (b — a), we get:
(b—-a)(b?+ab+a?)=@Q+3ab)(b—a) =b3—a®>=(b-a)(1l+3ab)
and since (b — a) = 1, then
b3 — a3 = (1 + 3ab) (9)
By adding and subtracting x to the right hand side, we get:

b3 —x+x—a3=1+3ab (10)

a+b+1

Also, by adding ( .

) to Eq.(10), we get:

3 3 a+b+1 a+b+1
b>—x+x—a +T=1+3ab+T (11)

a+b+1

Now, by dividing Eq.(11) on (x — a® + — ), We get
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b3—x 1+3ab+#
3 arbr1 1= ;,a+b+1
x—ad+—5—= x—ad+—5——
2 2
b3—x—(1+3ab+M)
= 2 =-1
;,a+b+1
x—ad3+—5—=
2
or
b -x—(1+3ap+ 22Ty
R RS ~ a+b
2
(a+b)(b* —x—1—3ap - 22 *1
= a+bh+1 =~(a+b)
x—ad+—F5——
2
So;
a+b (a+b)(x—b*+1+3ap+ 27200

2 2x —2a3 +a+b+1 (12)

Now, by applying (3), (6), (7) and (12) on the following Rational Rule:

A A
(If —=r and E:r then +C:r,whereA,B,C,D,reR)
B D B+D
we get:
E a+b 4x+a3+b3+2a2+2b2—1+(a+b)(x—b3+1+3ab+#)
¥ T (a+b)2+a2+b2+1+2(a+b)+2x—2a3+a+b+1

But, from Eq. (9), we obtain:

4x+a3+b3+2(az+b2)—1+(a+b)(x—b3+b3—a3+M

U~ z )

a?+2ab+bZ+a2+b2+1+2a+2b+2x—2a3+a+b+1

4x+a3+b3+2(az+b2)—1+(a+b)(x—a3+M

5= 2
Vx 2a%? +2b? +2ab+3a+3b+2(x —a3) +2

)

4x+a3+b3+2(a?+b2)-1+(a+b)(x—ad +¢)

So, Yx =

2(a%2+b%2+ab+x—a3+1)+3(a+b)
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Thus, Eq.(1) finds an approximate value for 3/x, wherea + b € N, x € Rsuchthath = a +1 and a® < x < b3.

Example 2.4.
Use the Restriction Method to find an approximate value for 3/19.

Sol. Since8 <19 < 27,then2 <319<3.S0; herea =2,a2 =4,a®=8andb = 3,b%2 =9,b3 = 27.
Now, by applying on Eq. (1), we get:
4(19)+8+27+2(4+9)—1+(2+3)(19—8+¥)

V19~ 2+9+ (2)(3)+19—8+1) + 3(2+3)

V19 ~ 2.6753

We note that (2.6753) is approximately close to the calculated value (2.6684) for /19 rounded to four decimal
places, and the absolute value of the error between the approximate value and the calculated value is (6.9 x 1073).

Example 2.5.

Use the Restriction Method to find an approximate value for /169.

Sol.

Since 125 < 169 < 216, then 5 < Y169 < 6. S0; a = 5,a%> = 25,a® = 125 and b = 6,b% = 36,b° = 216.

Hence, by applying on Eg. (1), we get:

A(169) + 125 + 216 + 2(25 + 36) — 1 + (5 + 6)(169 — 125 + 2+ 0+ 1

— )
169 ~ 2(25 + 36 + (5)(6) + 169 — 125 + 1) + 3(5 + 6)

V169 ~ 55344

(5.5344) is approximately close to the calculated value (5.5288) for ¥/169 rounded to four decimal places, and the
absolute value of the error between the approximate value and the calculated value is (5.6 x 1073).

Example 2.6.
Use the Restriction Method to find an approximate value for ¥/503.
Sol. Since 343 < 503 < 512, then 7 < /503 < 8. S0; a = 7,a® = 49,a® = 343 and b = 8,b? = 64,b% = 512.

By applying on Eqg. (1), we get:
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7+8+1

4(503) + 343 + 512 + 2(49 + 64) — 1+ (7 + 8)(503 — 343 + ——5—)

3f
503 ~ 2(49 + 64 + (7)(8) + 503 — 343 + 1) + 3(7 + 8)

V503 ~ 7.9603

Also, (7.9603) is approximately close to the calculated value (7.9528) for /503 rounded to four decimal places,
and the absolute value of the error between the approximate value and the calculated value is (7.5 x 1073).

3. Using Restriction Method to Approximate Some Cube Roots

The following table shows some examples that demonstrate the Restriction Method to approximate some of the
cube roots for random numbers.

Table 1.  Approximating some cube roots for randomly chosen numbers using the Restriction Method.
The approximate The calculated  The absolute

value using value value of the

Vx Restriction Method error
3 1.4483 1.4422 0.0060
Y14 2.4030 24101 0.0071
326 2.9560 2.9625 0.0065
/39 3.3719 3.3912 0.0193
V57 3.8599 3.8485 0.0114
/89 4.4577 4.4647 0.0070
Y171 5.5599 5.5505 0.0094
Va27 7.3571 7.5302 0.0069
39925 9.9792 9.9749 0.0043
311787 10.5777 10.5633 0.0144

4. Comparing Restriction Method for Approximating Cube Roots with Other
Method

In this section, we will compare our method with some other methods that show the results which are very close to
our method results for some cube roots, these methods are Newton-Raphson Method, Binomial Series, Linear
Approximation, and Taylor's Polynomial respectively.
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The following table shows the efficiency of each method, it also shows the fourth approximation for the cube root at

most when we apply the Newton-Raphson Method and we use the first three terms of a Binomial Series and the first

four terms of the Taylor's Polynomial. Moreover, we round all of these approximations to the fourth decimal places.

Table 2. Approximating some cube roots for randomly chosen numbers using some methods and the Restriction Method.
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Y941

9.7993
9.7993
0.0
9.7993
0.0
9.8033
0.0040
9.7995
0.0002
9.8263
0.0270

From Table (2), we conclude that all of the approximate values obtained by every method are close to the calculated
values.

5. Conclusion

In this paper, we present a new method called the Restriction Method for Approximating Cube Roots of rational
numbers. The number to find its approximating cube root is restricted between two full cube numbers, then we find
the cube roots of them, and by applying on Eqg. (1) we find an approximate value to the cube root of the entire
number.

The Restriction Method leads mostly to very close values from the calculated values for the cube roots, and it is
easy and simple to be applied by students in the preliminary stages; since it does not contain any of complicated
assumptions as in other methods like the Newton-Raphson Method, Binomial Series, Linear Approximation and
Taylor's Polynomial that any of them needs sufficient knowledge of some concepts, definitions, and techniques like
knowing functions, sequences, series, derivatives ...etc.
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