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1. Introduction

In [10], Dragomir has proved an Ostrowski inequality for the Riemann-Stieltjes integral, as follows:

Theorem 1.1.
Let f : [a,b] = R be a r-H-Hélder type mapping, that is, it satisfies the condition

lf (@)= fWI<Hlz—yl", Va,y€ [a,b],

where, H > 0 and r € (0,1] are given, and u : [a,b] — R is a mapping of bounded variation on [a,b]. Then we
have the inequality

b—a
2

a+b
2

€T —

f(f)(u(b)—u(a))—/abf(t)du(t)‘ <

y-\:/w) M

for all z € [a,b], where, \/° (u) denotes the total variation of u on [a,b]. Furthermore, the constant 1 is the best
possible in the sense that it cannot be replaced by a smaller one, for all r € (0,1].
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In [11], Dragomir has proved the dual case as follows:

Theorem 1.2.
Let f : [a,b] — R be a mapping of bounded variation on [a,b] and u : [a,b] — R be of r-H-Hélder type on [a,b].
Then we have the inequality

(w®) ~u@) @)~ [ 7 (0)du (t)\ @)

<H Km-avr+-®——mfﬂlm[(Vi(po+'(Vi(f0p}Up

[*5 + | = =] Ve ()

In [5], Barnett et al. established some Ostrowski and trapezoid type inequalities for the Stieltjes integral
f: f(t)du(t) in the case of Lipschitzian integrators for both Holder continuous and monotonic integrals are
obtained. The dual case is also analyzed. In [6], Cerone et al. proved some Ostrowski type inequalities for the
Stieltjes integral where the integrand f is absolutely continuous while the integrator u is of bounded variation.

For other results concerning inequalities for Stieltjes integrals, see [3, 7, 8, 14, 16, 18, 20].

Motivated by [17], Dragomir in [13], established the following companion of the Ostrowski inequality for mappings

of bounded variation.

Theorem 1.3.
Let f : [a,b] — R be a mapping of bounded variation on [a,b]. Then we have the inequalities:

3a+b
4

b—a

GRS R P

T4
4

b
for any z € [a, “£°] , where \/Z(f) denotes the total variation of f on [a,b]. The constant 1/4 is best possible.

For recent results concerning the above companion of Ostrowski’s inequality and other related results see

1,2, 4, 13, 15, 19].

In this paper, we establish a companion of Ostrowski’s integral inequality for the Riemann-Stieltjes integral
f: f(t)du(t), where f is assumed to be of r-H-Holder type on [a,b] and w is of bounded variation on [a,b], are
given. Applications to the approximation problem of the Riemann-Stieltjes integral in terms of Riemann-Stieltjes

sums are also pointed out.
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2. The Results

The following companion of Ostrowski’s inequality for Riemann-Stieltjes integral holds.

Theorem 2.1.
Let f : [a,b] = R be a r-H—-Hélder type mapping, where, H > 0 and r € (0,1] are given, and u : [a,b] = R is a
monotonic nondecreasing function on [a,b]. Then we have the inequality

’f(gc) {u <“;b) w(a)] +flatb—a) [u(b)fu(a;b)} f/abf(t)du(t)‘ (@)

(52 [5) o - 25281

QH{bZ +’x bH { (a;—b)_u(a)—;u(b)]7

for all x € [a, “T”]

IA

IN

Proof.  Using the integration by parts formula for Riemann—Stieltjes integral, we have

/+ @)~ FOldu) = £ @) [u (“57) (@) ‘/+ Hoa

and

/; [flat+b—z)— f(t)]du(t)=f(a+b—x) {u(b)—u(a;rb)} a+bf() u (t)

Adding the above equalities, we have
a+b

[T @@l [, (Farb-o) - f@)du)

1 o (55 ] s a - o (220)] - [ st

It is well known that if p : [¢,d] — R is continuous and v : [¢, d] — R is monotonic nondecreasing, then the Stieltjes

integral fcd p(t)dv(t) exists and the following inequality holds:

/cdpa)du(t)\ < [ bl %)
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Making use of this property and the fact that f is of r-H-Holder type on [a,b], we can state that

’f(:c){u(a;—b)—u(a)]+f(a+b—x)[u(b) (”b” /f ) du (¢ ‘

a+b b

[ 7 t@- @+ [, (fatb-o) - f@)du)

a+b

< / 1 (0) = £ 6] du ()| +

a

b

[f(a+b—=)— f ()] du(t)

a+b
2

a+b

o b

g/ @ = FOIdu®+ [ 17 @+b-2) -7 @) du0
a.+b b2

<H/ x7t|rdu(t)+H/L+b la+b—x—t]" du(t).

By the integration by parts formula for the Stieltjes integral, we have

a+b a+b

[T et - /(:c—t) w+ [ ey au
(g () e

a+b
7 u(t) 2 wu(t)
+r [/a (m—t)lf’"dt_/x (t—m)l’”dt] ,

and

b a+t+b—x b
/ la+b—x—t|"dul(t / +bfx7t)rdu(t)+/ (t+z—a—>b)" du(t)

+b—zx

(a+b )r <a42rb) r—a) )

+r

Now, by the monotonicity property of u we have

/b u (t) i /a+b71 U (t)
atbz t+z—a—b)""" ath (a4+b—x—1t)'"

_dt| .
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and

at+b—x at+b—zx r
/ u (t) 1,TdtZU($)/ dt Hzl(ajub_x) u (@),
ot (a+b—z—1) ot (a+b—z—1) r 2

which follows that

and

b a+b—x
/ u (t) Hdt*/ﬂ, u (t) —dt
atb—z t+2x—a—0) ot (a+b—z—1)

<1 [(x—a)’“— (“;b—w)r}u(af:),

which implies that

(250 e (552) et [ 2 [ 2
< (a;bfx)ru(a;b) —(z—a)"u(a)+ [(:vfa)rf (a;b* )T}U(x)
_ (a;b_xy [u(a;b) _u(x)] +(@—a) [ule) - u(a)],

similarly,

+r /b u () dt—/aﬂm u(t) dt
atb-e t+z—a—0)'"" ath (a+b—a—t)'7"

< <a;b—x)ru<a;b) —(z—a) u(b)+ [(:c—a)’"— (a;b—wﬂu(w)
_ <a+b_m)’" [u(a;b) _u@] + (@ —a) [u(x) —u®)],

which together with (6) proves the first inequality in (4). The second inequality is obvious by the property of

max function and we omit the details here. O
The following inequalities are hold:

Corollary 2.1.
Let f and u as in Theorem 2.1. In (4) choose
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1. x = a, then we get the following trapezoid type inequality

r@ ()~ +r0 s - ()] - [0

2. x = QT‘H’, then we get the following mid-point type inequality

amw—uw»f(“§b>—Kffmd4SH(b2“)7§Mw. ¥

We may state the following Ostrowski type inequality:

Corollary 2.2.
Let f and u as in Theorem 2.1. Additionally, if f is symmetric about the x-azis, i.e., f (a +b—x) = f(x), then
we have

3a+b
4

W@fuw»H@fAUﬁM4SHV;a+P—

}5?wy 9)

for all z € [a, 2£2].

Corollary 2.3.
Let u as in Theorem 2.1, and f : [a,b] — R be an L-Lipschitzian mapping on [a,b], that is,

If (@) = f @I < Llx—yl, Vo,y€la,b],

where, L > 0 is fivred. Then, for all x € [a, “T"'b], we have the inequality

‘f(x) {u(“;b) fu(a)] +flat+b-2) [u(b)fu(a;bﬂ f/abf(t)du(t)‘

gL[b;a-i-‘x— 3a:bH -\:/(u). (10)

The constant i is the best possible in the sense that it cannot be replaced by a smaller one.

Corollary 2.4.
In Theorem 2.1, if u is monotonic on [a,b], and f is of r-H-Holder type. Then, for all z € [a, “TH’], we have the
inequality

‘f(x) {u<“;b) fu(a)] +flatb—a) [u(b)fu(a;b>} _ abf(t)du(t)

b—a 3a+0b
R

<H

ywu@—uwn (1)
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Corollary 2.5.
Let f be of r-H-Holder type and g : [a,b] — R be continuous on [a,b]. Then we have the inequality

a+b

‘f(x)/2 ()ds+f(a+bfm)/b+ dsf/f

b—a 3a+0b|]"
o |

for all z € [a, £2], where ||g||, = f lg (£)] dt.

Proof.  Define the mapping u : [a,b] — R, u(t f g(s)ds. Then u is differentiable on (a,b) and u’(t) = g(t).

Using the properties of the Riemann-Stieltjes integral, we have

/f 1) du (¢ /f
Qw—éﬁumﬁ—fmmw

and

Remark 2.1.
In Corollary 2.5, if f is symmetric about the z-axis, i.e., f(a+b— x) = f (z), then we have

’f(m)/abg(S)ds—/abf(t)g(t)dt‘ SH{b;a+‘x_ 3a:b

For instance, choose z = a+b , then we get

£(“42) [awas— [ rwsra] < (U5) tal,. (1)
Theorem 2.2.

Let f : [a,b] — R be a mapping of bounded variation on [a,b] and u : [a,b] — R be of r-H-Hélder type on [a,b],
€ (0,1]. Then we have the inequality

‘f(x) {u(“;b) fu(a)] +flatb—a) [u(b)fu(a;b)} - abf(t)du(t)‘

}Wwp (13)

for all z € [a, “£°].

x at+b—zx

2~ a) + (452 —2) T max V2 (5), V27 (), Vi, (D)}

[27 (2 — @) + (%2 —2)"]"/*

VIO + (V) + (Ve )] i b a =t s

X
— 2

(1 (0—a)+ |z — 22" Vo (/)

for all x € [a, ‘%H’] where, \/Z (f) denotes the total variation of f on [a,].
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Proof.  As w is continuous and f is of bounded variation on [a, b], the following Riemann-Stieltjes integrals exist

and, by the integration by parts formula, we can state that

/x (u(t)fU(a))df(t)=(U(x)fU(a))f(x)f/xf(t)du(t),

[ (530
_ (u(aerfx)fu(a;b))f(aerfx)f (u(x)fu(a;b))f(x)f/gga+b_$f(t)du(t)

and
b
/ (u () — u (5)) df (¢)
a+b—x
b
=(U(b)—u(a+b—w))f(a+b—w)—/ £ () du (8).
at+b—x

If we add the above three identities, we obtain

{u<“‘2”’> —u(a)] F@)+fatb—z) {u(b)—u(a;b)] [
~ [wo-v@ao+ [T (so-u () )ae+ [ wo-uonae.

for all z € [a, “£°].

b

+ S~

Now, using the properties of absolute value, we have:
rofe(F) -u@] +raro-a [uo - ()] - [ rome

[ (o=e(552))we)

/HH (u(t) = u (b)) df (t)'
< [ -v@igo+ [T
b
i /W,_z Ju (t) = (b)] df (¢)
< H/: It —al" df (t) + /:erfm

<H/:(t—a)Tdf(t)+La2+b (5 -0) wor [ (-57) o

b
+ /11+b—nc (b—=t)"df (¢t)

<| [ wo-u@a |+

+

u(t)fu(a;b>‘df(t)

a+bl|" b »
Lo [ -

t —
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and for the last inequality we have used the well-known property if p : [¢,d] — R is continuous and v : [¢,d] — R

is of bounded variation, then the Riemann-Stieltjes integral fcd p(t)dv(t) exists and the following inequality holds:

d

d
/p(wdu(t)]s sup o () \/ ().

t€(c,d]

As u is of r-H-Holder type on [a, b], we can state that

sup |u(t) —u(a)| < sup [H({t—a)|=H(xz—a)",
t€la,x] tela,x]

sup
t€[z,a+b—x]

u(t)—u(a+b)'§ sup [H't—a+b
2 te[z,a+b—x] 2

RICES
and

swp () —u®)| < sup  [H(b—t))=H(z—a).
t€la+b—zx,b] tela+b—z,b]

Now, using (17), we have

’(u (“‘;b) —u(a))f(a:)—i— <u(b)—u(a;b )f(a+b—x)— bf(t)du(t)‘

a+b

for all € [a, “37], and the first inequality in (15) is proved. O

3. An Approximation for the Riemann-Stieltjes Integral

Let I, :a =z < z1 < -+ < &, = b be a division of the interval [a,b], hi = ;41 — x4, (1 =0,1,2,--- ,n—1) and

v (h) :==max {h;|i =0,1,2,...,n — 1}. Define the general Riemann-Stieltjes sum

S(fru,In,§) (16)

|
-

n

=, f (&) [u (%) — u(wz)] + f(xi+miv1 — &) [u (Tit1) —u (M—#)]

s
Il
<)

In the following, we establish some upper bounds for the error approximation of the Riemann-Stieltjes integral

f: f (t) du (t) by its Riemann-Stieltjes sum S (f,u, In, §).
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Theorem 3.1.

Let u : [a,b] — R be a mapping of bounded variation on [a,b] and f : [a,b] — R be of r-H-Hélder type on [a,b].

Then

b
[ £ 0du) =5 (w10 + R 10,6)
where, S (f,u, In, &) is given in (16) and the remainder R (f,u,I,&) satisfies the bound

57: 31'1 + xz+1

1=0,1,...,n—1

SHBV(’%)T\?(H)

R(f.u, 1, 6)| < H B”(h) +  max

[y

Proof.  Applying Theorem 2.1 on the intervals [z;, z;+1], we may state that

’f(&) [u (%) _“(Ii)} +f (@it aivn = &) [“ (@it1) —u (%)]
,/:Hlf(t) du (t)‘

i

1
< —h; i —
_H[4h+$

for all i € {0,1,2,--- ,n—1}.

3T; + Tit1

4

|

Summing the above inequality over ¢ from 0 to n — 1 and using the generalized triangle inequality, we deduce

|R(f, u, In, €)

= Z ‘f(fz) [u (%) —u(:vi)] + f(zi + i1 — &) [u(miH) _u (m

| 3z +x roN
i+ Zit1
M e AL
=0 x;

3mz + mz+1

< H sup BhiJr & —

r n—1Ti41
| XV

=0 x4

However,

3T + xit1

& — 1

sup {ihl +

i=0,1,...,n—1

y < By(h) + sup

& —

and

n—1%Ti4+1

SV =V,

=0 x;

3z + Tit1

2

)
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which completely proves the first inequality in (17).

For the second inequality, we observe that

3Ti + Tit1 1
i— | < ~hi
£ 4 - 4h
for all i € {0,1,2,--- ,n — 1}. which completes the proof. O

Corollary 3.1.
In Theorem 3.1, additionally, if f is symmetric about the x-axis, then we have S (f,u, I, &) reduced to be

n—1

S(fousIny€) = Y f (&) [u(@ir) = u(wi)]. (18)

1=0

Then

b
/ F @ du(t) =S (fru, I, €) + R (f,u, In, €)

where, S (f,u, I, &) is given in (18) and the remainder R (f,u, I.,£) satisfies the bound in (17).
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