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1. Introduction

The theory of convexity has evolved even more in recent years as a result of its broad application in various

fields of science, as illustrated in the following references ((Grinalatt, & Linnainmaa, 2011) [5], Nicolescu &

peerson, 2006) [11], (PecariÂ´c, Proschan & Tong, 1992) [14], (Ruel & Ayres, 1999) [15]. Generalized con-

vexity and its application like h-convexity, η-convexity, (s,m)-convexity and others, are discuss in the following

references(Hernandez Hernandez & Vivas-Cortez, 2019) [6], (Liu, Wen & Park, 2016) [10], (Noor, 2006) [12],

(Vivas-Cortez, 2016) [17], ( Vivas, Hernandez Hernandez & Merentes, 2016) [16]. Let f : p ⊆ R→ R is a convex

function and u, v ∈ I with u < v.

f(
u+ v

2
) ≤ 1

d− c

∫ d

c

f(s)ds ≤ f(u) + f(v)

2
(1)
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The above inequality, Hermite-Hadamard inequality is one of the most important inequality for convex function.

This inequality has large applicability in the domain of stats and probability (Pecari’c, Proschan & Tong, 1992) [14]

also include domain of functional analysis (Nicolescu & Peerson, 2006) [11]. In current years various analyst have

investigated under the field of modern version in the advancement of the understanding of convex function. As

represented in the following references (Aslani, Delavar, & Vaezpour, 2018) [1], (Chen & Wu , 2016) [2],(Delavar

& De La Sen , 2016) [4], (kashuri & Liko, 2019) [9], (Omotoyinbo& Mogbademu, 2014) [13], (Xi & Qi, 2012) [18]).

Further the extent progress of the method of convex function has been linked in the area of integral inequalities

represent in the following paper(Vivas, Hernandez Hernandez & Merentes, 2016) [16], (Vivas-Cortez, 2016) [17].

Influenced by the valuable work stated above, we modified the following work by examining the Hermite-Hadamard

inequality using h-preinvex function.

2. Preliminaries

We identify the following definition linked with the h pre-invex .

Definition 2.1.
If the given inequality true for the set k ⊆ Rn and u, v ∈ K then a function f is known as h pre-invex

f(u+ sη(v, u)) ≤ h(1− s)f(u) + h(s)f(v)

where η(u, v) : k ∗ k → R and s ∈ (0, 1) and h 6= 0 be a non negative function h : [0, 1]→ R .

Remark 2.1.
We obtain definition of classical convex function by putting h(s)=s and η(v, u) = v − u in definition 1.

Definition 2.2.
(Kermausuor & Nwaeze, 2020) [8] The fractional integrals of order α > 0 of f on the left- and right- sides of
Riemann-Liouville are denoted as

kJ
α
c+f(u) :=

1

kΓk(α)

∫ u

c

(u− s)
α
k
−1f(s)ds, u > c

and

kJ
α
d−f(u) :=

1

kΓk(α)

∫ d

u

(s− u)
α
k
−1f(s)ds, u < d

Γk is the k-gamma function presented by

Γk(u) :=

∫ ∞
0

su−1e
−sk
k ds,Re(u) > 0

where k > 0, with the properties that Γk(u+ k) = uΓk(u),Γk(k) = 1 and Γ1(u) = Γ(u).

Definition 2.3.
Let [c, d] ⊂ R be a finite interval. The katugampola fractional integrals of order α > 0 of f ∈ Xρ

c (a, b) on the left-
and right-sides are therefore denoted by

ρIαc+f(u) =
ρ1−α

Γ(α)

∫ u

c

sρ−1

(uρ − sρ)1−α f(s)ds
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ρIαd−f(u) =
ρ1−α

Γ(α)

∫ d

u

sρ−1

(sρ − uρ)1−α f(s)ds

with c < u < d ,ρ > 0, if the integrals exist.

Remark 2.2.
Let α > 0 and ρ > 0. Then for u > c

lim
ρ→1

ρIαc+f(u) = Jαc+f(u)

The same is true for right-handed operators.

Definition 2.4.
Let k ⊆ Rn be the set and u, v ∈ K then a function f is said to be (ψ, h) pre-invex if

f(u+ ξeιψ(η(v, u))) ≤ h(1− ξ)f(u) + h(ξ)f(v)

where η(u, v) : k ∗ k → R and s ∈ (0, 1) and h 6= 0 be a non negative function h : [0, 1]→ R .

Remark 2.3.
If we take h(ξ) = ξ and η(v, u) = v − u in Definition 4 then we get ψ convex function.

Theorem 2.1.
Let α > 0 and let f : [c, d]→ R be a positive function with 0 ≤ c < d and f ∈ L[c, d].If f is a convex function on
[c,d], then the given inequality true:

f(
c+ d

2
) ≤ Γ(α+ 1)

2[d− c]α [Jαa+f(d) + Jαd−f(c)] ≤ f(c) + f(d)

2

3. Main Results

In this section, we generalize the results of (Jleli, O’Regan & Samet, 2016) [7]. Let f : [c, c + η(d, c)] → R be a

given function, where 0 < c < c+ η(d, c) <∞. We define F (x)=f(x)+f(2c+ η(d, c)−x). Then it is easy to show

that if f(x) is convex on [c, c + η(d, c)], Fx) is also convex. The function F has several interesting properties,

especially,

1. F (x) is symmetric to (2c+ η(d, c))/2

2. F (c) = F (c+ η(d, c)) = f(c) + f(c+ η(d, c))

3. F ( 2c+η(d,c)
2

) = 2f( 2c+η(d,c)
2

)

Theorem 3.1.
If f is a convex function on [c, c+ η(d, c)] and f ∈ L[c, c+ η(d, c)]. Then F (x) is also integrable, and the following
inequalities hold

F (
2c+ η(d, c)

2
) ≤ ραΓ(α+ 1)

2[η(d, c)ρ]α
[ρIαc+F (c+ η(d, c)) + ρIα[c+η(d,c)]−F (c)]| ≤ F (c) + F (c+ η(d, c))

2
(2)

with α > 0 and ρ > 0.
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Proof. Since f(x) is a convex function on [c,d], we have for x, y ∈ [c, d]

f(
x+ y

2
) ≤ f(x) + f(y)

2

Set x = c+ sη(d, c) and y = c+ (1− s)η(d, c) then

2f(
2c+ η(d, c)

2
) ≤ f(c+ sη(d, c)) + f(c+ (1− s)η(d, c))

Using the notation of F (x), we have

F (
2c+ η(d, c)

2
) ≤ F (c+ (1− s)η(d, c)) (3)

Multiplying both side of (3.3) by

(c+ (1− s)η(d, c))ρ−1

[(c+ η(d, c))ρ − (c+ (1− s)η(d, c))ρ]1−α
(4)

integrating the resulting inequality with respect to s over [0,1], we get

F (
2c+ η(d, c)

2
)

[η(d, c)ρ]α

αρ(η(d, c))
≤

∫ 1

0

(c+ (1− s)η(d, c))ρ−1

[(c+ η(d, c))ρ − (c+ (1− s)η(d, c))ρ]1−α
F (c+ (1− s)η(d, c))ds

=
1

η(d, c)

∫ c+η(d,c)

c

uρ−1

[(c+ η(d, c))ρ − uρ]1−αF (u)du

=
Γ(α)ρα−1

η(d, c)
[ρIαc+F (c+ η(d, c))]

F (
2c+ η(d, c)

2
) ≤ Γ(α+ 1)ρα

[η(d, c)ρ]α
[ρIαc+F (c+ η(d, c))] (5)

Similarly multiplying both sides of (3.3) by

[c+ (1− s)η(d, c)]ρ−1

[(c+ (1− s)η(d, c))ρ − cρ]1−α (6)

integrating the resulting inequality over [0,1], we get

F (
2c+ η(d, c)

2
) ≤ Γ(α+ 1)ρα

[η(d, c)ρ]α
[ρIα(c+η(d,c))−F (c)] (7)

By adding (3.5) and (3.7), we obtain

F (
2c+ η(d, c)

2
) ≤ Γ(α+ 1)ρα

2[η(d, c)ρ]α
[ρIαc+F (c+ η(d, c)) + ρIα(c+η(d,c))−F (c)] (8)

The first inequality of (3.2) is proved.
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For the second part, since f is convex function, then for t ∈ [0, 1], we have

f(c+ sη(d, c)) + f(c+ (1− s)η(d, c)) ≤ f(c) + f(c+ η(d, c))

Using the notation of F (x), we then have

F (c+ (1− s)η(d, c)) ≤ F (c) + F (c+ η(d, c))

2
(9)

Multiplying both sides of (3.9) by factor (3.4) and integrating the resulting inequality over [0,1], with respect to

s, we get

Γ(α)ρα−1

η(d, c)
[ρIαc+F (c+ η(d, c))] ≤ [η(d, c)ρ]α

αρ(η(d, c))

F (c) + F (c+ η(d, c))

2

Γ(α+ 1)ρα

[η(d, c)ρ]α
[ρIαc+F (c+ η(d, c))] ≤ F (c) + F (c+ η(d, c))

2
(10)

Similarly multiplying both sides of (3.9) by factor (3.6) and integrating the resulting inequality over [0,1], with

respect to s, we get

Γ(α+ 1)ρα

[η(d, c)ρ]α
[ρIα(c+η(d,c))−F (c)] ≤ F (c) + F (c+ η(d, c))

2
(11)

Adding (3.10) and (3.11), we get

Γ(α+ 1)ρα

2[η(d, c)ρ]α
[ρIαc+F (c+ η(d, c)) + ρIα(c+η(d,c))−F (c)] ≤ F (c) + F (c+ η(d, c))

2

The proof is complete.

Remark 3.1.
Theorem 2 is a generalization of Hermite-Hadamard inequality. Putting ρ→ 1 in (3.2)

1. ρIαc+F (c+ η(d, c)) =
1

Γ(α)

∫ c+η(d,c)

c

[(c+ η(d, c))− u]α−1F (u)du =

Jαc+f(c+ η(d, c)) + Jα(c+η(d,c))−f(c)

2. ρIα(c+η(d,c))−F (c) =
1

Γ(α)

∫ c+η(d,c)

c

[u− c]α−1F (u)du =

Jα(c+η(d,c))−f(c) + Jαc+f(c+ η(d, c))

We get the Riemann-Liouville form of Hermite-Hadamard inequality of Theorem 1.

In order to prove Theorem 3, we need the following lemma.
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Lemma 3.1.
Let f : [c, c+η(d, c)]→ R be a differentiable mapping on (c, c+η(d, c)) with c < c+η(d, c). If f ′ ∈ L[c, c+η(d, c)],
then F is also differentiable and F ′ ∈ L[c, c+ η(d, c)], and the following equality holds:

F (c) + F (c+ η(d, c))

2
− Γ(α+ 1)ρα

2[η(d, c)ρ]α
[ρIαc+F (c+ η(d, c)) + ρIα(c+η(d,c))−F (c)] =

η(d, c)

2[η(d, c)ρ]α

∫ 1

0

K(s)F ′(c+ (1− s)η(d, c))ds (12)

with α > 0 and ρ > 0. Where K(s) = [(c+ (1− s)η(d, c))ρ − cρ]α − [(c+ η(d, c))ρ − (c+ (1− s)η(d, c))ρ]α.

Proof.

I =

∫ 1

0

K(s)F ′(c+ (1− s)η(d, c))ds

=

∫ 1

0

[(c+ (1− s)η(d, c))ρ − cρ]αF ′(c+ (1− s)η(d, c))ds−∫ 1

0

[(c+ η(d, c))ρ − (c+ (1− s)η(d, c))ρ]αF ′(c+ (1− s)η(d, c))ds

= I1 + I2

Integrating by parts, we get

I1 =

∫ 1

0

[(c+ (1− s)η(d, c))ρ − cρ]αF ′(c+ (1− s)η(d, c))ds

=
1

η(d, c)

∫ c+η(d,c)

c

[uρ − cρ]αdF (u)

= [
(uρ − cρ)αF (u)

η(d, c)
]c+η(d,c)c − αρ

η(d, c)

∫ c+η(d,c)

c

uρ−1

(uρ − cρ)1−αF (u)du

=
(η(d, c)ρ)α

η(d, c)
F (c+ η(d, c))− Γ(α+ 1)ρα

η(d, c)
ρIα(c+η(d,c))−F (c)] (13)

Similarly

I2 = −
∫ 1

0

[(c+ η(d, c))ρ − (c+ (1− s)η(d, c))ρ]αF ′(c+ (1− s)η(d, c))ds

=
(η(d, c)ρ)α

η(d, c)
F (c)− Γ(α+ 1)ρα

η(d, c)
ρIαc+F (c+ η(d, c))] (14)

Adding (3.13) and (3.14), we get

I =
(η(d, c)ρ)α

η(d, c)
[F (c) + F (c+ η(d, c))]− Γ(α+ 1)ρα

η(d, c)
[ρIαc+F (c+ η(d, c))] + ρIα(c+η(d,c))−F (c)]

Then, multiplying both sides by η(d,c)
2(η(d,c)ρ)α

we obtain equality (3.12).

We are now ready to prove the following Hermite-Hadamard type inequality.
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Theorem 3.2.
Let f : [c, c+ η(d, c)]→ R be a differentiable mapping on (c, c+ η(d, c)) with a < b and f ′ ∈ L[c, c+ η(d, c)]. Then
F is also differentiable and F ′ ∈ L[c, c + η(d, c)]. If |f ′| is convex on [c, c + η(d, c)], then the following inequality
holds:

F (c) + F (c+ η(d, c))

2
− Γ(α+ 1)ρα

2[η(d, c)ρ]α
[ρIαc+F (c+ η(d, c)) + ρIα(c+η(d,c))−F (c)] =

η(d, c)

2[η(d, c)ρ]α

∫ 1

0

|K(s)ds|(2|f ′(c)|+ |f ′(η(d, c))|) (15)

with α > 0 and ρ > 0. Where K(s) = [(c+ (1− s)η(d, c))ρ − cρ]α − [(c+ η(d, c))ρ − (c+ (1− s)η(d, c))ρ]α.

Proof. Notice that F’(x)=f’(x)-f ′(c+ c+ η(d, c)− x). By the convexity of |f ′|, we have

F ′(c+ (1− s)η(d, c)) = f ′((c+ (1− s)η(d, c))− f ′(c+ sη(d, c))

≤ |f ′(c)|+ (1− s)|f ′(η(d, c))|+ |f ′(c)|+ s|f ′(η(d, c))|

= 2|f ′(c)|+ |f ′(η(d, c))| (16)

By inequalities (3.12) and (3.16) we get

|F (c) + F (c+ η(d, c))

2
− Γ(α+ 1)ρα

2[η(d, c)ρ]α
[ρIαc+F (c+ η(d, c)) + ρIα(c+η(d,c))−F (c)]| ≤

η(d, c)

2[η(d, c)ρ]α

∫ 1

0

|K(s)||F ′(c+ (1− s)η(d, c))|ds

≤ η(d, c)

2[η(d, c)ρ]α

∫ 1

0

|K(s)|ds(2|f ′(c)|+ |f ′(η(d, c))|)

This complete the proof.

4. Concluding Remarks

Here we determine major results related to Hermite-Hadamard inequality using h pre-invexity. A couple of results

in the previous research paper are special cases of few of our results. The modified integral inequalities give a

more precise approximation than some of the preceding ones.
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[14] PecariÂ´c, J.E., Proschan, F., & Tong, Y.L. Convex functions ,partial orderings and statistical applications.

Mathematics. In Science and Engineering; Academic Press, Inc. Boston, MA, USA, 992.

[15] Ruel, J.J., & Ayres, M.P. Jensen’s inequality predicts effects of environmental variations. Trends Ecol. Evol.,

14 (1999), 361-366.

[16] Vivas, M., Hernandez Hernandez, J.E., & Merentes, N. New Hermite-Hadamard and Jensen type inequalities

for h-convex functions on fractal sets. Rev. Colomb. Matematicas, 50 (2016), 145-164.

[17] Vivas-Cortez, M. Fejer type inequalities for (s,m)-convex functions in second sense. Appl. Math. Inf. Sci. 10

(2016), 1689-1696.

[18] Xi, B.Y., & Qi, F. Some integral inequalities of Hermite-Hadamard type for convex functions with applications

to means. J. Funct. Spaces Appl., 2012, 1-14.

70


	Introduction
	Preliminaries
	Main Results
	Concluding Remarks
	References

