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1. Introduction

Inequalities have been proved to be an applicable tool for the development of many branches of Mathematics.
From the past few decades, its importance has been increased noticeably and it is now treated as an independent
branch of Mathematics. Uptill now a vast number of research papers and books have been devoted to inequalities.
A. M. Ostrowski (1893-1986) in 1938, gave a helpful and vital integral inequality known as Ostrowski’s inequality
[22].

M. W. Alomari [1]-[4] worked on generlizations of Ostrowski’s type inequalities. S. I. Butt [6] gave the Jensen-
Griiss inequality and its applications. S. S. Dragomir et.al [9] and [10] presented inequality of Ostrowski type for

I Hl and applications of Ostrowski’s inequality to numerical quadrature rules and special means. A. Qayyum et.al
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[25] gave new inequalities of Ostrowski’s type. P. Cerone et.al [7] and [8] pointed out an inequality of Ostrowski’s

type for L (a,b), L, (a,b) and L, (a,b). A. Qayyum et.al [23] and [24] offered Ostrowski’ s type inequalities

which were the generalization of the inequalities given in [5]. Different researchers [11]-[21] worked on refinement

of Ostrowski’s type inequalities and its applications. From the above work, we develop new gernalized inequalities

for different norms e.g || g”||

in numerical integration.

2. Results and Discussion

Theorem 2.1.
Let g : [a,¢] — R be continuous on [a, ¢] and twice differentiable mapping on (a,¢). Then

O e O L

Jr% {(g(a) +9(¢) — T (gl(c') - g'(a))} — - 1 /g(t)dt

CcC—a
2 ) 5
3(1-2) +1] ey if 9" € Lo (a,0)
2
< =5 (1—%) Il g"ll, ifg" € L (a,¢)
(o— )1+% 2q+1 2q+1 %
o[-y 2 (3) ] I, w L)
q

2(2¢+1)

holds for all x € [a—i—hé_“,c'—hé_ a], where %—Q—%:l and h € [0, 1], k= 1,2,3,...,n.

k k

Proof. Define K (" ,) : [a, c']2 — R such that

2

et [t—(a—&—h.é_Ta)] ,  ift € a,q]
K (z,t) =

2

o [tf(éfh.ég‘l)] . ifte (zd

By using (2) and after some calculations, we get the following identity:

w1 9"[ly and || g”||, - In the end, we give applications for some special means and
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We can write (3) as

where

Using (5) in (4), we can find the first inequality in (1).

By using (2) and (3), we get

S2(1—> {{ (*hka)r’
e-s59)- e

After simplification, we get second inequality in (1).

Again using (2) an

d (3), we get

(=5 oo (=37 o)
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where

¢

/K“’ (z,t)dt

a

q oh 2¢+1 5 2q+1
«Q 2q+1

<% (- - = .

S 1 {(1 ) (i) ]

After simplification, we get third inequality in (1).

Hence proved our main result (1). O

Remark 2.1.

For h = 0 in (1), we obtain the result obtained by Barnett et.al [5], P. Cerone et.al in [7] and [8], and for k= 2
in (1), we get the result obtained by A. Qayyum et.al in [23] and [24] which indicates special cases. Hence for
different values of h and k, we can get variety of results.

3. Application for Some Special Means

Remark 3.1.
Consider g : (0,00) — R such that

g (z) =z ,7 € R\{-1,0}

then .
C,ia/g(x)dx:L:(a,é),
gl@)+g@=24(a"¢),

J @~ g @=rr-1)(E-a)L . (ae)
[ 9"l =1lr(r—=1l6, (a,)
where
e if r € (2,00)

a  if re(-00,2)\{-1,0}

So, (1) gives

2h [ g ar oy P =D (E—a) 2] -
pal E G 4k b 2] B
RUEIVIEY) [3(1 2:) +1] 6, (a,¢) ©
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Choosing = = A (a,¢) in (6), we get

2h » 2h
(“z)“z

_Irr-niE-a)’

g

Aae) =D E—a) - ] o

2
2h 1 1 .
¥ 5) + 4:| J, (a,¢)

24
Remark 3.2.
Consider g : (0,00) — R such that
glz)=—, z € {a—i—h.?, Ry ka} C (0,00)
then '
L ywdemr”
o [s@d =1 @)
2 2A(a,0)
g (a‘) + g (C) H (a’ C) - GQ (a‘7 C)
Vo 2(¢—a) _2(¢—a)Af(a,¢)
9 g()_H(a,c)Gz(a,c)_ G* (a,é)
1d"ll, = =
So, (1) gives
2h A1l  2nA he—a) -1
1—— 2——| = 2 - 2
k z|xz kG 2kG
2
c—a 2h
< ( 12@3) [3 (1 — ?) +1 (7
Choosing z = A (a,¢) in (7), we get
L2\ L 2hAl he—a)] o
k) A kG 2kG?
< (c'—a)2 3 2h 1 2_,_1
- 124 ko2 4
Choosing z = L (a, ¢) in (7), we get
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Remark 3.3.
Consider g : (0,00) — R such that

g(x):lnx,xe{a—l—h.?,é—h.cia C (0,00)
then .
1 /C(ﬂc)dﬂc—lnl(ac')
i—a)? N ’
. 2 . . c—a
g(@)+g()=nG (a,6), ¢ (¢)=g(a) =57
G (a,¢)
1" 1
o[l ==
< qa
So, (1) becomes
2
2h h > h(¢—a)
1- =2 1+ 2] 42 Be=9 | i1
‘( 1){){lnx +m] +1§ InG + G In

Choosing = = I (a,¢) in (8), we get

2h 2h Al h > h(é—a)
klnI—t—(l—k){l—}—k{lnG =

3

Remark 3.4.
Consider the mapping g : (0,00) — R such that

g(.ﬁlﬁ) = xTvr € R\ {7150}
then

1

c—a

/gumxzzﬂ@a

a

9@ +9@=24("¢"), J@O-g@=r@-1)E-a)L (@)

r —1

| g"l|, =Ir(r=Dl(¢=a)L, _, (a,¢)
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So, the inequality (1) gives

2
2h r o hr(r—=1)(¢—a)  r-2 r
+§ A(a , C )— 4l§ LT Y L,’.
. 2
re=DlE=a (2" oo
2 L{ r —1

Choosing z = A (a, ¢)in ((9), we get

2h »  2h
‘(1k)“k

3

Remark 3.5.
Consider g : (0,00) — R such that

1 c—a . c—a
g(m)—;,:pe{a—i—h. P — h. k C (0,00)
then '
L dr=1""
o [s@d=L @)
D — _ 2A(a,¢) / 1\ 2(6—a)Ala,c)
g(a)+g(é) = H@d o ! @ —g(@=—"c (@.0)
o'l =26 a) L @
So, the inequality (1) gives
. 2
17% 27é 1 2h13 7h(c—c21) I
k x|z kG 2kG
AN
< (1 — —) (¢— a)zLi
Choosing z = A (a,¢) in (10), we get
L2 1 2mA [ hE—a)| o
k) A" ke? %G?
—a) 2\
c—a -3
< _ e
< (%) e
Choosing = = L (a,¢) in (10), we get
2
2h A 1 2hA h(é — a)
H(lk) (-2)-1 i+t |- "5 '

SDLM+;(1?)@®TL§

(10)
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Remark 3.6.
Consider g : (0,00) — R such that

¢ —a . ¢ —a
g(x)=lnz, z € {a—&—h.T,c—h. Kk

3

C (0,00)

then

/ég(m)dx:ln I(a,¢)

a

1

c—a

9(0)+9() =In G (a,0), 9’<C’>—9'(a):‘% ’

1a"[], = (¢~ a) L7 (@.¢)

So, the inequality (1), gives

2
2h Al h > h(¢—a)
(¢—a)’ AN
¢c—a -2
<5 (-g) o
Choosing z = A (a,¢) in (11), we get
_2h
l A(l lg)—i—ﬁ l G2+h(c'7a)2
n 7 " n BrTe
(c—a)2 2h 2
<55

Choosing z = I (a,¢) in (11), we get

2h 2h Al h > h(é—a)
?zn1+<171) {17—} k[lnG + =

3 3

2
1 1 2h -2
< = — — [ — h— .
<35 {|I Al+ 3 (1 . > (¢ a)} L_,

3

4. Application for Numerical Integration-I

. . . . h, h,
Let I,: a=uy, <u <u, <..<wu, , <u, =¢ beadissection of [a,¢], s, € [u;—&—é.f,uzﬂ - 6.?} be a

sequence of intermediate points, h, = uyy1 —uz (i = 0,1...., n — 1), then we get:
Theorem 4.1.
Let g : [a,¢] = R be a twice differentiable on (a,¢), with ¢ € Loo(a, )

i.e. H gNHoo = Sup | g”(t)‘ < 00,

te(a,e)
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then

é

/g(u)du:A( g, 1,,¢, 5)+R( "I <5)

»In
a

where
A(g,9,1,,5, 5)

~(1- ) 60 (s = =51 g ()]

§ & 5=
%Z ) +g uz+1))h—EZh Ag' (ur)
> =0 ¥ =0

and the reminder R(g,9¢’,1,,s,0) satisfies the estimation

|R(9,9'.1,,5,6)]
26 A
<[(-3) i S

Proof. By using Theorem 2.1 on [uz,uzy1], (1 =0,1,2,...,n — 1), we obtain:

’(l - %) [9(9) - (Q - m) g'(ﬂ)] h

Imply > and with the help of triangular inequality, we get the desired inequality.
i=0

Corollary 4.1.
The following perturbed mid-point rule holds:

é

where
Am (9,9',1,,0)
20 s Uy + Up41
<1_Z) i:og( 2 )h
5 n—1 52 n—1
+3 2 (gw) +g(wn))h, — —3 D hy Ag(ur)
° =0 ¥ 4=0
and the reminder term Ry ( 9,9, 1,8 ) satisfies the estimation
By (9.9 1,59
26 1\ 1] .y SRA
< (F-3) i1 S
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Again, the following perturbed trapezoidal rule holds:
/g(u) du= Ar (9,9',1,,8) + Rr (9,9, 1,,0) ,

a

where

Ar (97 glv In,? 6)

and Rr (g,9',1,,0) satisfies the estimation

|Rr (9,9, 1,,0)|
2
26
3 (1 - f) +1

5. Application for Numerical Integration-II

n—1,3

1 h1
[FEES

1=0

<

By using same idea, that we already used above, we get the following quadrature formula:

Let g : [a,¢] — R be continuous on [a,¢] and twice differentiable on (a, ¢) such that g” € L1 (a, ¢)
ice. || |1, :/| g" ()| dt

then we have
¢

/Q(U)du =A(9,9.1,,5,0) +R(g9,9',1,,5,0)

a

where
Alg,9'.1,,5,6)

-(1-%) [966) = (s = £ g ()]
9
k

and R( g,9',1,,s,0 )satisfies the estimation

»tn

|R(9,9'.1,,5,6)]
111 20
s (-2)rme s

Z/Z(h) 26 ’ "
<EB (-2 1,

IN
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where v (h) = max {uz41 —uz| 1 =0,1,....,n—1}

Proof.  Apply Theorem 2.1 on [uz, ur+1], (i =0,1,2,....,n — 1), we obtain:

(1= 2) [t (s - 2552 e ]

5 h.§
+1 [0+ i) = G2 Ag | o [ gtoya

Uyi41

<! (17@ (i — ) / | g(t)] dt

3

wy

By using same technique, as we already used above, we get the desired inequality.

6. Application for Numerical Integration-III

Again using same idea, that we already used above, we get the following quadrature formula
Let g : [a,¢] = R be a twice differentiable on (a,¢) such that g” € Ly (a,¢),p > 1

=

e || 4", = /| ol d

then we have

¢

/g(u)du:A( g,1,,5,6)+R(g,9'1,,,0)

where

n—1
_ 28 Uz + Uzy1 ) ’ }
= <1 1§) 2 [g (s:) (gi 2 g (s)| by
5 n—1 (52 n—1 5
+ e 2o (9 (uw) + g (uira)) hy — — > h Ag ()
® =0 P S
and the reminder R ( g,4’,1,,s,d )satisfies the estimation

B (9.9 1,:<,9)]

n—1 2q+1 2g+1 %
(g T )
2(2¢+1)" \i=0
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Proof.  Apply Theorem 2.1 on [uz, uz+1], (¢ =0,1,2,..,n — 1), we obtain:

|<1 - %5) [96) = (s - %) g5 h

+g [(Q(uz) + g (urg1)) — %Ag’(u;)] ha = / g

1 26\ " s\
2q+1 "
(6 )

2(2¢+1)

By using same technique, as we already used above, we get the desired inequality. O

7. conclusion

We established generalized Ostrowski type inequality for differentiable mappings whose second derivative belongs
to different Lebesgue spaces as like L, [a,b], L, [a,b] and L, [a,b]. Here we show that the inequalities obtained

in [5], [8], [10], [23] and [24] are special cases of our inequalities. Applications are also discussed.
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