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1. Notion of the sentinel

The study of dynamic of spatiotemporal systems has generated wide literature with applications in many fields

as such ecology, immunology, desertification, population dynamics, pollution as well as many others. Interesting

problem for such systems concerns incomplete data and state measurement on a certain region of its geometric

domain. In the case of distributed systems defined on a geometric domain Ω, numerous papers were devoted to

the state controllability in the whole domain Ω (see Lions[10, 12] and the references therein). This work caters

with regional analysis paradigm developed by Zerrik [31], El Jai [7] and others, by using the weakly sentinel notion

introduced by Rezzoug and Ayadi [1, 20] for pollution estimation where the measurement region O is either Ω or

in the pointwises of Ω. Precisely, we consider a parabolic distributed parameter system defined on the geometric

domain Ω and we assume that the following assumptions are given :

- An open regular and bounded set Ω of Rn, n ≥ 1,with boundary Γ = ∂Ω.
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- A time interval [0, T ] we denote Q = ]0, T [ ×Ω and Σ = ]0, T [ ×∂Ω.

- A second order differential linear operator A with compact resolvent and which generates a strongly continuous

semi-group (S(t))t≥0 on the state space X = L2(Ω).

- A∗ will denote the adjoint operator of A.

Then the considered system which is described by the following state equations
∂y
∂t

(t, x) +Ay(t, x)

y(0, x)

y(t, x)

=

=

=

F (t, x)

y0(x)

g(t, x)

in Q,

in Ω,

on Σ,

(1)

where

F ∈ L2(Q), g ∈ L2(Σ) and y0 ∈ L2(Ω).

Have unique weak solution. And we note that

∫
Ω

yAqdx−
∫

Ω

qA∗ydx =

∫
Γ

y
∂

∂vA
qdΓ−

∫
Γ

q
∂

∂vA∗
ydΓ,

for all y and q in the Sobolev space H1(Ω). In systems theory, the sentinel is related to the possibility of finding

the state of the adjoint system dynamics independently of the missing and pollution terms, and of the choose of

control spaces. The regional (boundary) sentinel explores the notion of sentinel in the particular case where the

support of the initial state of adjoint system dynamics is into the subregion (a part of boundary) ω.

2. Regional sentinel

In this section, we choose O in the interior of Ω and we assume that the considered system is described by the

following equations 
∂y
∂t

(t, x;λ, τ) +Ay(t, x;λ, τ)

y(0, x;λ, τ)

y(t, x;λ, τ)

=

=

=

f0(t, x) + λf(t, x)

y0(x) + τy(x)

0

in Q,

in Ω,

on Σ,

(2)

where f0, y0 are given ; f , y are unknown functions and λ, τ are small unknown parameters. Let h0 be a function

given in L2((0, T )×O). One considers a functional defined by the formula

S(λ, τ) =

∫ ∫
(0,T )×O

(h0 + ϕ)y(x, t;λ, τ)dxdt, (3)

where ϕ ∈ L2((0, T )×O).

Definition 2.1.
The functional S(λ, τ) is said to be regional sentinel defined by h0 if the following properties are satisfied :
1) there exists u ∈ L2([0, T ] ×O) such that ∂S

∂τ
(λ, τ)λ=0,τ=0 = 0 , for all ȳ ∈ L2([0, T ] × Ω) such that its spacial

support is into O.
2) ‖u‖ = inf ‖ϕ‖ for all ϕ satisfying the property one.
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Now we focus on the regional sentinel construction : let ŷ(t, x) be the unique solution of the following equations


∂ŷ
∂t

(t, x; 0, 0) +Aŷ(t, x; 0, 0)

ŷ(0, x; 0, 0)

ŷ(t, x; 0, 0)

=

=

=

f0(t, x)

y0(x)

0

in Q,

in Ω,

on Σ.

(4)

The derivative of the system (2) with respect to the parameter λ near (λ = 0, τ = 0) is given by the following

equations 
∂yλ
∂t

(t, x) +Ayλ(t, x)

yλ(0, x;λ, τ)

yλ(t, x)

=

=

=

f(t, x)

0

0

in Q,

in Ω,

on Σ,

(5)

and also the derivative of the system (2) with respect to the parameter τ near (λ = 0, τ = 0) is given by the

following equations 
∂yτ
∂t

(t, x) +Ayτ (t, x)

yτ (0, x)

yτ (t, x)

=

=

=

0

y

0

in Q,

in Ω,

on Σ.

(6)

The adjoint system associated to (6) is defined by the following equations


− ∂q
∂t

(t, x) +A∗q(t, x)

q(T )

q

=

=

=

(h0(t, x) + ϕ(t, x))χO(x)

0

0

in Q,

in Ω,

on Σ,

(7)

with h0 and ϕ in L2(]0, T [×O). The system (7) is decomposed into two systems, free one and forced one. The

free system is given by the following equations


− ∂q0

∂t
(t, x) +A∗q0(t, x)

q0(T )

q0

=

=

=

h0(t, x)χO(x)

0

0

in Q,

in Ω,

on Σ,

(8)

the forced system is given by the following equations


− ∂q1

∂t
(t, x) +A∗q1(t, x)

q1(T )

q1

=

=

=

ϕ(t, x)χO(x)

0

0

in Q,

in Ω,

on Σ,

(9)

then the solution of (7) is written as

q = q0 + q1.
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Definition 2.2.
The dynamic system (9) is said to be regionally controllable on the region ω if, for all desired state, there exists
a control such that the final state is equal to the considered desired state on ω.

We consider q0(0, .) ∈ L2(Ω) as the desired state and we take a region ω = Ω\O. Then the regional controllability

consists in finding a control u in L2(]0, T [ ;L2(O)) which permits, in a finite time, to bring the state q1 of

system (9) from the initial state q1(T, x) = 0, to the final desired state −q0(0, x) on this region.

Remark 2.1.
If the higher multiplicity of the eigenvalue of A is equal to one, then the system (9) is controllable in L2(ω),
[7, 31].

Theorem 2.1.
If the system (9) is ω regional controllable, then there exists a unique control u ∈ L2(]0, T [ ;L2(O)) which satisfies
the definition 2.1 of the sentinel.

Proof. If the system (9) is regionally controllable on ω then, for q0(0) is given in L2(O), there exists a unique

control u ∈ L2((0, T ) × O) such that q1(0)χω = −q0(0)χω, hence we get the first formula of the definition 2.1.

From the equation (6) and the equation (7) we can deduce

−
∫
O
q(0)ydx =

∫ ∫
(0,T )×O

(h0 + u)yτ (x, t;λ, τ)dxdt, (10)

and hence, for any y having its support outside O, we have
∫
O q(0)ydx = 0, hence

∂

∂τ
S(λ, τ)λ=0,τ=0 =

∫ ∫
(0,T )×O

(h0 + u)yτ (x, t;λ, τ)dxdt = 0. (11)

2.1. Estimate of the pollution terms

Now, Let ym(t, x) be the measured state of the system on the observatory O during the interval ]0, T [, then the

measured regional sentinel is given by formula

Sm(λ, τ) =

∫ ∫
(0,T )×O

(h0 + u)ym(x, t;λ, τ)dxdt. (12)

Theorem 2.2.
If the system (9) is ω−regionally controllable then we have the following estimation

∫
[0,T ]×ω

qfdxdt = Sm(λ, τ)− S(0, 0).
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Proof. We know that

S(λ, τ) = S(0, 0) + λ
∂

∂λ
S(λ, τ)λ=0,τ=0 + τ

∂

∂τ
S(λ, τ)λ=0,τ=0, (13)

using the equations (11) and (12) we have

Sm(λ, τ)− S(0, 0) = λ
∂

∂λ
S(λ, τ)λ=0,τ=0, (14)

where

∂

∂λ
S(λ, τ) |λ=0,τ=0 =

∫ ∫
O×(0,T )

(h0 + u)yλ(x, t)dxdt, (15)

and

S(0, 0) =

∫ ∫
O×(0,T )

(h0 + u)ŷ(x, t)dxdt, (16)

using the equations (5) and (7), we deduce that∫ ∫
(0,T )×O

(h0 + u)yλ(x, t)dxdt =

∫
(0,T )×Ω

qfdx,

hence

λ

∫
(0,T )×Ω

qfdx = Sm(λ, τ)− S(0, 0).

3. Pointwise sentinel

In this section, we choose O = {b} a point in Ω and we assume that the considered system is described by the

equation (2). Let h0 be a function given in L2(0, T ),one considers a functional defined by the formula

S(λ, τ) =

∫ T

0

(h0(t) + ϕ(t))y(b, t;λ, τ)dt, (17)

where ϕ ∈ L2(0, T ).

Definition 3.1.
The functional S(λ, τ) is said to be pointwise sentinel defined by h0 if the following properties are satisfied :
1) there exists u ∈ L2([0, T ]) such that ∂S

∂τ
(λ, τ)λ=0,τ=0=0 for all ȳ ∈ L2([0, T ]× Ω) and ȳ =0 on [0, T ]× {b}.

2) ‖u‖ = inf ‖ϕ‖ for all ϕ satisfying the property 1).

Now we focus on the Pointwise sentinel construction: let ŷ(t, x) be the some solution of (4),the derivative solution

with respect to the parameter λ is given by (5) and also the derivative solution with respect to the parameter τ is

given by (5) The adjoint system associated to (5) is defined by the following equations
− ∂q
∂t

(t, x) +A∗q(t, x)

q(T, x)

q

=

=

=

(h0(t) + φ(t))δ(b− x)

0

0

in Q,

in Ω,

on Σ,

(18)
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with h0 and ϕ in L2(0, T ). The system (18) is decomposed into two systems, free one and forced one. The free

system is given by the following equations


− ∂q0

∂t
(t, x) +A∗q0(t, x)

q0(T, x)

q0

=

=

=

h0(t)δ(b− x)

0

0

in Q,

in Ω,

on Σ.

(19)

The forced system is given by the following equations


− ∂q1

∂t
(t, x) +A∗q1(t, x)

q1(T, x)

q1

=

=

=

ϕ(t)δ(b− x)

0

0

in Q,

in Ω,

on Σ,

(20)

there is one function ϕ such that

q1

∣∣∣Ω/{b} (t, x) = −q0
∣∣∣Ω/{b} (t, x)u(t, x) = ϕ(t)δ(b− x)

hence

q
∣∣∣Ω/{b} (t, x) = 0 and u(t, x) = ϕ(t)δ(b− x)

q = q0 + q1.

Multiplying the equation (6) by q and integrating by parts, we have

∫ T

0

f(b, t)q(b, t)dt =

∫ T

0

(h0 + u)yτdt = 0

Let ym(t, x) be a measured state of the system on the observatory {b} during the interval ]0, T [, then the measured

sentinel is given by

Sm(λ, τ) =

∫ T

0

(h0 + u)ym(t, b;λ, τ)dt, (21)

and we write

S(λ, τ) = S(0, 0) + λ
∂

∂λ
S(λ, τ)λ=0,τ=0 + τ

∂

∂τ
S(λ, τ)λ=0,τ=0, (22)

where

S(0, 0) =

∫ T

0

(h0 + u)(t)ŷ(t, b)dt. (23)
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3.1. Estimate of the pollution terms

In this section, the objective is to estimate the pollution terms independently of the missing terms.

Theorem 3.1.
Under the hypothesis of the theorem 2.1, the pollution term of the system (5) is estimated independently of the
missing term by

Sm(λ, τ)− S(0, 0) =

∫ T

0

(h(t) + u(t))(ym(t, b)− ŷ(t, b))dt,

where ŷ is the solution of (4) and ym is the observed state in {b} during the time interval [0, T ] .

Proof. Let S(λ, τ) be the sentinel defined by h0, from the equation (22), we can deduce :

λ
∂

∂λ
S(λ, τ) |λ=0,τ=0 = S(λ, τ)− S(0, 0),

as we know that S(λ, τ) = Sm(λ, τ) in the point {b} , then we deduce from the equations (17) and (18) :

∂

∂λ
S(λ, τ) |λ=0,τ=0 =

∫ T

0

(h0 + u)yλ(t, b)dt =

∫ T

0

qf(t, b)dt,

thus

λ

∫ T

0

q(t, b)f(t, b)dxdt = Sm(λ, τ)− S(0, 0)

=

∫ T

0

(h0 + u)(ym(t, b)− ŷ(t, b))dt.

4. Weak sentinel

4.1. Formulation problem

For n = {2; 3} , let Ω be a bounded open subset of Rn with boundary ∂Ω = Γ of class C2, T > 0, and let O be

an open non empty subset of Ω. Set Q = (0, T )× Ω, Σ = (0, T )× Γ, U = (0, T )×O. We consider the parabolic

equation : 
y′ −∆y + f (y)

y (0)

y

=

=

=

ξ + λξ̂

y0 + τ ŷ0

0

in

in

on

Q,

Ω,

Σ.

(24)

Where (.)′ is the partial derivative with respect to time t.

Remark 4.1.
The problem (24) admits a unique solution. For the sake of simplicity, we denote y(x, t;λ, τ) = y(λ, τ).
One supposes that the data ξ is rather regular, and that the terms of pollution ”that one wants to estimate” are
rather regular. It will be always supposed that the solution y check at least y ∈ L2 (Q) .
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Remark 4.2.
One will always indicate by y0 the solution y (x, t; 0, 0) ; thus


y′0 −∆y0 + f (y0)

y0

y0(0)

=
=
=

ξ
0
y0

in
on
in

Q,
Σ,
Ω.

(25)

The problem considered here consists in trying to estimate λξ̂ starting from observations, distributed or borders,

without seeking to estimate the term lack τ ŷ0.

One starts with a distributed observation, therefore a distributed sentinel.

4.2. The weak sentinel method

Definition 4.1.
(definition, existence and uniqueness of the sentinel)
Let h ∈ L2(U) and for any control function u ∈ L2(U), set

S (λ, τ) =

∫
Q

(h+ u)χOy (x, t;λ, τ) dxdt, (26)

the functional S is said to be weak sentinel if it satisfies the following conditions :
for all ε > 0 there exists u ∈ L2(U) such as

u ∈ L2(U), of minimal norm. (27)

∣∣∣∣ ∂∂τ S (0, 0)

∣∣∣∣ ≤ ε. (28)

Remark 4.3.
The function u = −h give place to (26) so that the problem (27, 28) admits a single solution, which is defined by
h.
The problem is thus :
(1) to calculate this solution ;

(2) to see whether the corresponding sentinel justifies its name, i.e. gives information on pollution λξ̂.

4.2.1. Adjoint state

The adjoint state is introduced q by


−q′ −∆q + f ′ (y0) q

q

q (T )

=

=

=

(h+ u)χO

0

0

in Q,

on Σ,

in Ω.

(29)

Where (.)′ is the partial derivative with respect to time t, h, u ∈ L2 (U) .

Remark 4.4.
System (29) is the adjoint parabolic problem. It appears under this form in J.L.Lions sentinels theory as the
associated adjoint state.
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We multiply (29) by yτ and we integrate by parts, we have

(q (0) , ŷ0) =

∫
Q

(h+ u)χOyτ (x, t;λ, τ) dxdt,

yτ is defined by 
y′τ −∆yτ + f ′ (y0) yτ

yτ (0)

yτ

=

=

=

ξ̂

ŷ0

0

in

in

on

Q,

Ω,

Σ.

So we get

∂

∂τ
S (0, 0) = (q (0) , ŷ0) , (30)

so that (28) is equivalent to

‖q (x, 0)‖L2(Ω) ≤ ε. (31)

There is thus business with a problem of the type ”approximate controllability with zero” .

4.2.2. The main result

The main result is the following

Lemma 4.1.
Let v ∈ L2 (U) .Then there is no ρ ∈ L2 (Q) , ρ 6= 0 such that ρ satisfies


−ρ′ −∆ρ+ f ′ (y0) ρ

ρ
ρχO

=
=
=

0 in Q,
0 on Σ,
v.

(32)

Proof. If the problem (32) admits a solution, then it is given by

ρ (x, t) =

∞∑
j=1

αj (t)uj (x) . (33)

Where uj are eigenfunctions of  −∆u

u

=

=

λu

0

in Ω,

on Γ.
(34)

Differentiate the solution (34) once with respect to t and twice with respect to x and substitute these derivatives

into the first equation of (32). We then obtain

∞∑
j=1

(
α′j (t)λjαj (t)

)
uj (x) = 0. (35)

Thus,

α′j (t)− λjαj (t) = 0. (36)
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Because (uj) form an orthonormal base of L2 (Q). Furthermore, the function ρ satisfies the boundary conditions

if and only if
∞∑
j=1

αj (t)uj (x) = vχO. (37)

As vχO ∈ L2 (Q) then

vχO =

∞∑
j=1

〈vχO, uj〉L2(Q) uj (x) . (38)

Consequently

αj (t) = 〈vχO, uj〉L2(Q) . (39)

Finally, we have  −α
′
j (t) + λjαj (t)

αj (t)

=

=

0 in (0, T ) ,

〈vχO, uj〉L2(Q) .
(40)

Then the solution of the first order linear is given by

αj (t) = 〈vχO, uj〉L2(Q) e
λjt. (41)

Consequently, if the problem (32) admits a solution, it is necessarily in the form :

ρ (x, t) =

∞∑
j=1

〈vχO, uj〉L2(Q) e
λjtuj (x) . (42)

We prove now that ρ /∈ L2 (Q) . Indeed,

∫ T

0

|αj (t)|2 dt =
∣∣∣〈vχO, uj〉L2(Q)

∣∣∣2 ∫ T

0

e2λjtdt (43)

=
∣∣∣〈vχO, uj〉L2(Q)

∣∣∣2 [ −1

2λj
+

1

2λj
e2λjT

]
.

But, λj is the eigenvalue of problem (34), then λj −→
j 7−→∞

∞. Consequently,

∫ T

0

|αj (t)|2 dt −→
j 7−→∞

∞. (44)

Which means that the series whose general term αj (t) is not normally convergent. So, problem (32) admits no

solution.

Theorem 4.1.
For ε > 0, h ∈ L2 (U) , there exists some control u and some state q such that (29) and (31) hold. Moreover, there
exists a unique pair (ûχO, q̂) with û of minimal norm in L2 (U) , i.e. such that (29, 31) and (27) hold.
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Proof. Let q be a solution of the system (29) and q0 a solution of the following system


−q′0 −∆q0 + f ′ (y0) q0

q0

q0 (T )

=

=

=

hχO

0

0

in Q,

on Σ,

in Ω.

(45)

We put

q = q0 + z (46)

Then, z is the solution of the following problem
−z′ −∆z + f ′ (y0) z

z

z (T )

=

=

=

uχO

0

0

in Q,

on Σ,

in Ω.

(47)

We now introduce the set of states reachable at time 0 defined by

F (0) =
{
z (u, 0) such as u ∈ L2(U)

}
. (48)

It is clear that F (0) is a vector subspace of L2 (Ω). According to the HAHN-BANACH theorem, it will be

dense in L2 (Ω) if and only if its orthogonal in L2 (Ω) is reduced to zero. As {0} ⊂ F⊥ (0) , it remains to show

that F⊥ (0) ⊂ {0} . Let ρ0 ∈ F⊥ (0), then

〈
ρ0, z (0)

〉
L2(Ω)

=

∫
Ω

ρ0z (0) dx = 0. (49)

Where z is solution of (47). It is therefore natural to define the adjoint ρ of z, this is the solution of the following

problem 
−ρ′ −∆ρ+ f ′ (y0) ρ

ρ (0)

ρ

=

=

=

0

ρ0

0

in Q,

in Ω,

on Σ.

(50)

Where ρ is solution of (50).

Now we multiply the first equation of system (47) by ρ. After integration by parts in Q, it comes

0 =

∫ ∫
Ω×(0,T )

ρ
(
−z′ −∆z + f ′(y0)z

)
dxdt+

∫
Ω

ρ (T ) z (T ) dx (51)

+

∫ ∫
Γ×(0,T )

ρ
∂z

∂ν
Γdt−

∫ ∫
Γ×(0,T )

∂ρ

∂ν
zdΓdt−

∫
Ω

ρ0z (0) dx.

Since z and ρ are solutions of (47) and (50) respectively, (51) becomes

∫ ∫
Ω×(0,T )

ρuχOdxdt = 0. (52)
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Therefore, ρ satisfies (50) and (52) and by applying Lemma 4.1, we deduce that

ρ = 0 in Q.

As a consequence, ρ0 = 0 which shows that F⊥ (0) = {0} .

4.3. Characterization of optimal control

In this section, we will characterize the optimal control using a result of Fenchel-Rockafellar duality.

The optimality system satisfied by (û, q̂) is established. Let ρ0 ∈ L2 (Ω) and ρ the associated solution of
ρ′ −∆ρ+ f ′ (y0) ρ

ρ (0)

ρ

=

=

=

0

ρ0

0

in Q,

in Ω,

on Σ.

(53)

We now introduce the functional Jε defined by

Jε
(
ρ0) =

1

2

∫ T

0

∫
O
|ρ|2 dxdt+ ε

∥∥ρ0
∥∥
L2(Ω)

+

∫ T

0

∫
O
ρhdxdt. (54)

Consider the following unconstrained problem

(Pε) :

 min Jε
(
ρ0
)
,

ρ0 ∈ L2 (Ω) .
(55)

Then, we have

Proposition 4.1.
The functional Jε defined in (54) is coercive.

Proof. To prove that Jε is coercive, it suffices to show the following relation :

lim
‖ρ0‖

L2(Ω)
→∞

Jε
(
ρ0
)

‖ρ0‖L2(Ω)

≥ ε. (56)

Let
(
ρ0
j

)
⊂ L2 (Ω) be a sequence of initial data for the adjoint system (53) with

∥∥ρ0
j

∥∥
L2(Ω)

−→∞. We normalize

them as follows

ρ̃0
j =

ρ0
j∥∥ρ0

j

∥∥
L2(Ω)

. (57)

So
∥∥ρ̃0

j

∥∥
L2(Ω)

≤ 1. On the other hand, let ρ̃j be the solution of (53) with initial data ρ̃0
j . Then, we have

Jε
(
ρ0
j

)∥∥ρ0
j

∥∥
L2(Ω)

=
1∥∥ρ0

j

∥∥
L2(Ω)

∫ T

0

∫
O

(
1

2
|ρj |2 + ρjh

)
dxdt+ ε (58)

=

∫ T

0

∫
O
ρ̃j

(
1

2
ρj + h

)
dxdt+ ε.
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We now show that the last integral in equation (58) is bounded. Indeed, we know that ρj is the solution of the

problem 
ρ′j −∆ρj + f ′ (y0) ρj

ρj

ρj (0)

=

=

=

0

0

ρ0
j

in

on

in

Q,

Σ,

Ω.

(59)

Multiplying the first equation of system (59) by ρj then integrating by parts on Q, yields

0 =

∫ T

0

∫
Ω

(
ρ′j −∆ρj + f ′ (y0) ρj

)
ρjdxdt =

1

2
‖ρj (T )‖2L2(Ω) (60)

−1

2

∥∥ρ0
j

∥∥2

L2(Ω)
+ ‖∇ρj‖2L2(Q) .

By the Poincaré inequality, (60) becomes,

C0 ‖ρj‖2L2(Q) ≤ ‖∇ρj‖
2
L2(Q) ≤

1

2

∥∥ρ0
j

∥∥2

L2(Ω)
. (61)

Now, by Cauchy Schwartz inequality, one finds

∫ T

0

∫
O

hρ∥∥ρ0
j

∥∥
L2(Ω)

dxdt ≤ C1

‖ρj‖L2(Q)∥∥ρ0
j

∥∥
L2(Ω)

. (62)

From (61), (62), we conclude that ∫ T

0

∫
O

hρ∥∥ρ0
j

∥∥
L2(Ω)

dxdt ≤ C. (63)

Returning to relation (58), two cases can occur :

1.
∫ T

0

∫
O ρ̃

2
jdxdt > 0. In this case, we immediately obtain

Jε
(
ρ0
j

)∥∥ρ0
j

∥∥
L2(Ω)

−→
‖ρ0
j‖L2(Ω)

7−→+∞
+∞. (64)

2.
∫ T

0

∫
O ρ̃

2
jdxdt = 0.In this case, since

(
ρ̃0
j

)
j

is bounded in L2 (Ω) , we can extract a subsequence
(
ρ̃0
j

)
j

such that

:  ρ̃0
j ⇀ ψ0 weakly in L2 (Ω) ,

ρ̃j ⇀ ψ weakly in L2
(
0, T ;H1

0 (Ω)
)
.

(65)

Where ψ is solution of system (53) with initial data ψ0. Moreover, by lower semi continuity of the norm, it comes

∫ T

0

∫
O
|ψ|2 dxdt ≤ lim inf

∫ T

0

∫
O
|ρ̃j |2 dxdt = 0. (66)

Therefore,

ψ = 0 in O × (0, T ) . (67)
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And as ψ is solution of (53), and in view of (67), we have

ψ = 0 in Ω× (0, T ) . (68)

Thus,

ρ̃j ⇀ 0 weakly in L2 (0, T ;H1
0 (Ω)

)
. (69)

Moreover, from inequality (61), we deduce that

(
ρj

‖ρ0
j‖L2(Ω)

)
j

is bounded in L2
(
0, T ;H1

0 (Ω)
)
. Hence

ρj∥∥ρ0
j

∥∥
L2(Ω)

⇀ ξ in L2 (0, T ;H1
0 (Ω)

)
. (70)

But,

ρ̃j =
ρj∥∥ρ0

j

∥∥
L2(Ω)

⇀ 0. (71)

From (70) and (71), we conclude that

ξ′ −∆ξ + f ′ (y0) ξ = 0 in L2 (Q) . (72)

So by Lemma 4.1, it comes

ξ = 0 in Q. (73)

As a consequence,

ρ̃j =
ρj∥∥ρ0

j

∥∥
L2(Ω)

7−→ 0. (74)

But,

Jε
(
ρ0
j

)∥∥ρ0
j

∥∥
L2(Ω)

=
1∥∥ρ0

j

∥∥
L2(Ω)

∫ T

0

∫
O

(
1

2
|ρj |2 + ρjh

)
dxdt+ ε. (75)

Thus,

lim inf
j 7−→+∞

Jε
(
ρ0
j

)∥∥ρ0
j

∥∥
L2(Ω)

≥ ε. (76)

Hence relation (56) is satisfied.

Theorem 4.2.
Problem (55) has a unique solution ρ̂0 ∈ L2 (Ω). Furthermore, if ρ̂ is the solution of (53) associated to ρ̂0, then
(û = ρ̂, q) is solution such that (58), (60) and (56) hold.

Proof. As Jε attains its minimum value at ρ̂0 ∈ L2 (Ω), then, for any ψ0 ∈ L2 (Ω) and any r ∈ R we have

Jε
(
ρ̂0) ≤ Jε (ρ̂0 + rψ0) =⇒ Jε

(
ρ̂0 + rψ0)− Jε (ρ̂0) ≥ 0. (77)
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On the other hand,

Jε
(
ρ̂0) =

∫ T

0

∫
O

(
1

2
|ρ̂|2 + ρ̂h

)
dxdt+ ε

∥∥ρ̂0
∥∥
L2(Ω)

.

Jε
(
ρ̂0 + rψ0) =

1

2

∫ T

0

∫
O
|ρ̂|2 dxdt+

r2

2

∫ T

0

∫
O
|ψ|2 dxdt (78)

+r

∫ T

0

∫
O
ρ̂ψdxdt+

√
ε
∥∥ρ̂0 + rψ0

∥∥
L2(Ω)

+

∫ T

0

∫
O
h (ρ̂+ rψ) dxdt.

Substituting (78) in (77) and after simplifications, we find

0 ≤ Jε
(
ρ̂0 + rψ0)− Jε (ρ̂0) (79)

0 ≤ r2

2

∫ T

0

∫
O
|ψ|2 dxdt+ ε

[∥∥ρ̂0 + rψ0
∥∥
L2(Ω)

−
∥∥ρ̂0
∥∥
L2(Ω)

]
+r

∫ T

0

∫
O
ψ (ρ̂+ h) dxdt.

On the other hand, ∥∥ρ̂0 + rψ0
∥∥
L2(Ω)

−
∥∥ρ̂0
∥∥
L2(Ω)

≤ |r| .
∥∥ψ0

∥∥
L2(Ω)

. (80)

From (79) and (80), we obtain for any ψ0 ∈ L2 (Ω) and r ∈ R,

0 ≤ r2

2

∫ T

0

∫
O
|ψ|2 dxdt+ ε |r| .

∥∥ψ0
∥∥
L2(Ω)

+ r

∫ T

0

∫
O
ψ (ρ̂+ h) dxdt.

Dividing by r > 0 and by passing to the limit r → 0, we obtain

ε.
∥∥ψ0

∥∥
L2(Ω)

+

∫ T

0

∫
O
ψ (ρ̂+ h) dxdt ≥ 0.

The same calculations with r < 0 give∣∣∣∣∫ T

0

∫
O
ψ (ρ̂+ h) dxdt

∣∣∣∣ ≤ ε ∥∥ψ0
∥∥
L2(Ω)

; ∀ψ0 ∈ L2 (Ω) .

so if we take û = ρ̂χO in (58) and we multiply the first equation of the system (58) by ψ solution of (53) and we

get after integration by parts over Q, ∫
Ω

q(0)ψ0dx =

∫ T

0

∫
O

(h+ ρ̂)ψdxdt. (81)

It comes from the last two relations:∣∣∣∣∫
Ω

q(0)ψ0dx

∣∣∣∣ ≤ ε ∥∥ψ0
∥∥
L2(Ω)

; ∀ψ0 ∈ L2 (Ω) .

Consequently,

‖q (x, 0)‖L2(Ω) ≤ ε. (82)
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4.4. Use of the concept of sentinel : Detection of pollution and furtivity

It is noted that

S (λ, τ) ' S (0, 0) + λ
∂S
∂λ

(0, 0) + τ
∂S
∂τ

(0, 0) . (83)

And

observation of y = yχO = function m0 (x, t) of L2 (O × (0, T )) . (3.2)

With the notation (62) for the observation of y, and while using (55), one thus has

λ
∂S
∂λ

(0, 0) '
∫ ∫

O×(0,T )

(h+ u)m0dxdt− S (0, 0)− τ ∂S
∂τ

(0, 0) . (84)

Such as

S (0, 0) =

∫ ∫
O×(0,T )

(h+ u) y0dxdt.

But

λ
∂S
∂λ

(0, 0) =

∫ ∫
O×(0,T )

(h+ u) yλdxdt. (85)

In (85), yλ is defined by 
y′λ −∆yλ + f ′ (y0) yλ

yλ (0)

yλ

=

=

=

ξ̂

0

0

in

in

on

Q,

Ω,

Σ.

(86)

By multiplying the corresponding equation (29) by yλ, one finds, after integration by parts, that

∂S
∂λ

(0, 0) =

∫ ∫
O×(0,T )

q0ξ̂dxdt. (87)

Consequently

∫ ∫
O×(0,T )

(q0 + z)
{
λξ̂
}
dxdt '

∫ ∫
O×(0,T )

(h+ ρ) (m0 − y0) dxdt− τ ∂S
∂τ

(0, 0) . (88)

So ∫ ∫
O×(0,T )

q0
{
λξ̂
}
dxdt '

∫ ∫
O×(0,T )

(h+ ρ) |m0 − y0| dxdt+ τε. (89)

the quantity (89) which is estimated by the 1st member of (83).

Pollution λξ̂ is furtive for the sentinel defined by h if

∫ ∫
O×(0,T )

q0
{
λξ̂
}
dxdt = 0. (90)

There are thus always furtive pollution for a sentinel.
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5. Conclusion

In this work we present the weak and pointwise sentinel to estimate the pollution term in diffusion equation

when the state governed by unknown datum and missing initial condition when the classical approach of sentinel

method gives us information related to the missing data for this we try to avoided this problems by notion of

control. This method can be also used in pointwise sentinel and weakly sentinel.
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[8] A. Hafdallah, & A. Ayadi. Optimal control of electromagnetic wave displacement with an un-

known velocity of propagation. International Journal of Control, 92 (11), 2693-2700. (2019).

https://doi.org/10.1080/00207179.2018.1458157

[9] I. Kaarer and A. Ayadi and I. Rezzoug.Weak Controllability and the New Choice of Actuators.Global Journal

of Pure and Applied Mathematics. ISSN 0973-1768 Volume 14, Number 2 (2018), pp. 325–330.
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[15] G. M. Mophou, & G. M. N’Guérékata. Optimal control of a fractional diffusion equation with state constraints.

Computers & Mathematics with Applications, 62 (3), (2011). 1413-1426. DOI:10.1016/j.camwa.2011.04.044

[16] G. M. Mophou. Optimal control of fractional diffusion equation. Computers & Mathematics with Applica-

tions, 61 (1), 68-78. (2011). https://doi.org/10.1016/j.camwa.2010.10.030

[17] G. Massengo, & O. Nakoulima. Sentinels with given sensitivity. Euro. J. Appl. Math, 19, 21-40. (2008). DOI:

https://doi.org/10.1017/S0956792507007267

[18] Y. Miloudi, O. Nakoulima, & A.Omrane. On the instantaneous sentinels in pollution prob-

lems of incomplete data. Inverse Problems in Science and Engineering, 17 (4), 451-459. (2009).

https://doi.org/10.1080/17415970802015948

[19] N. Djenina, A. Ouannas, IM. Batiha, G. Grassi and P. Viet-Thanh. On the Stability of Linear

Incommensurate Fractional-Order Difference Systems, VT Pham Mathematics 8 (10), 1754. (2020).

https://doi.org/10.3390/math8101754

[20] I. Rezzoug, A. Ayadi. Sentinels for the identi cation of pollution in domains with missing data, ADSA. ISSN

0973-5321, Volume 8, Number 3, pp. 439 449, (2013).

[21] I. Rezzoug, & A. Ayadi. Weakly sentinels for the distributed system with pollution terms in the boundary.

Int. Journal of Math. Analysis, Vol. 6, (2012), no. 45, 2245 - 2256.

[22] I. Rezzoug, A. Ayadi. Weakly Sentinel involving a Navier-Stokes Problem and Detecting Pollution. General

Letters in Mathematics Vol. 5, No. 2, Oct (2018), pp.93-104. https://doi.org/10.31559/glm2018.5.2.4

[23] I. Rezzoug, T.E. Oussaeif. Solvability of a solution and controllability of partial fractional differential systems.

Journal of Interdisciplinary Mathematics, (2021). https://doi.org/10.1080/09720502.2020.1838754

61



Sentinel method and distributed systems with missing data

[24] I. Rezzoug, T.E. Oussaeif and A. Benbrahim. Solvability of a solution and controllability for nonlinear frac-

tional differential equation. Bulletin of the Institute of Mathematics Vol. 15 (2020), No. 3, pp. 237-249 DOI:

10.21915/BIMAS.2020303

[25] I. Rezzoug, T.E. Oussaeif. Approximate Controllability. WSEAS TRANSACTIONS on SYSTEMS. Volume

19, (2020). DOI: 10.37394/23202.2020.19.3

[26] I. Rezzoug, S. Dehilis and T.E. Oussaeif. Boundary control of a heat equation. Asia Mathematika. Volume 5

Issue: 1 , (2021) Pages: 28-43. DOI: doi.org/10.5281/zenodo.4722088

[27] H. Selatnia, A. Berhail, & A. Ayadi. Average Sentinel for a Heat Equation with Incomplete Data. J Appl

Computat Math, 7 (421), 2. (2018).

[28] MT. Shatnawi, N. Djenina, A. Ouannas, IM. Batiha and G. Grassi. Novel convenient conditions for the

stability of nonlinear incommensurate fractional-order difference systems. Alexandria Engineering Journal

61 (2), 1655-1663. (2021). DOI: 10.1016/j.aej.2021.06.073

[29] MT. Shatnawi, A. Ouannas, G. Bahia, IM. Batiha and G. Grassi. The Optimal Homotopy Asymptotic Method

for Solving Two Strongly Fractional-Order Nonlinear Benchmark Oscillatory Problems, Mathematics 9 (18),

2218 1. (2021). https://doi.org/10.3390/math9182218

[30] E. Zuazua. Averaged control. Automatica, 50 (12), 3077-3087. (2014).

https://doi.org/10.1016/j.automatica.2014.10.054
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