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1. Introduction

Integrals have been an ongoing topic in the mathematical analysis since they have been discovered. Integrals are
widely used in evaluation of various series, see [2],[5],[9],[11]. Many books have been written about them, see
[3],[10]. The topic we will discuss today are integrals with fractional part. Some of them can be found here [4],[8].
In this paper we give a generalization of the integral of the fractional part, both in terms of the arbitrary power
which occurs in the integrand and in terms of the amout of integrals, many integrals involving fractional part
can be found here [6]. The recursive sequence is found that links every integral of the sequence with the integral
defined as C, in the introductory.

We give our first important and well known definition

Definition 1.1.

The function {} denotes the fractional part of a function, the function |z| denotes the greatest integer less than
or equal to x. They are related to the function variable in the following relation

{z} =2 — |z|.

More about the usage of the fractional and integer part as a function, see [7].
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Let us give a few examples of the fractional part function.
a) {r}=0.14....

b) {2.25} =0.25

Now a few examples of the integer part.

a) |45 =4

b) |7 =3

Let us define the integral sequences we will discuss.

Definition 1.2.
The sequence C), is defined in the following way

Cn:/.../ I {%}ymiw,
Yy XT2T3...Tn

1
Vp-1l0,1] P2

The sequence I, is given by

k m
I, ://{q (‘r”‘r”_l"'m) }( ! ) drndrp—1..dz;.
il TnIn—-1...22

Vn[0,1]

The next definition will be extensively used in solving the single and double fractional part integrals.

Definition 1.3.
The Hurwitz zeta function, see [1] is defined for #(s) > 1 and a # 0, —1, —2.. by

—+o0

1
¢(s,a) = Zm

n=

The next definition is used to give a closed form of the C), integral.

Definition 1.4.
The upper incomplete gamma function, see [1] is defined as

_ tee s—1 _—t
I(s,z) = e dt

where s is a complex parameter, whose real part is positive.

In the next section we begin with the simplest form of the integral we will discuss.

2. Main results

First Theorem of our paper plays a role in evaluating the I integral.



V.Stojiljkovié

Theorem 2.1.
The following equality holds for k € (0, %) ,g €N

{q}
k
= K 1 1 k 1 1 k L 1

- (hae (e prre) wac (e faea) -xe (o)
k 1 1 q

* (*mf (*” W) K¢ (*” z“f)) "

Proof.  Let us observe the integral
1
[ {2
o Lz

We introduce a substitution zik =t which gives us

L oo
/1 R L s
o LzF k J, t1+k

Q
;T" =

==

1
Let us call a constant % ¢ to minimize the clutter in the formulas. We need to get rid of the fractional part,

therefore we write it in terms of the sum and the integral as follows

d f mHiom dt
0 lik r=e tl+%

We will focus ourselves onto the integral evaluation and then sum each expression we get.

/m+1t—mdt_ k(t + (k — 1)m) ""“
mo R (k — 1)tk m

_km+14+(k—1)m) k(m+(k—1)m)

(k- 1)(m+1)% (k—1)m*

1—1
_ k(m+1) 4 mk  km "% k-t
(k—1D(m+1% (m+1)%

.
—
o
I
—
N

Summing each of the expressions and multiplying all of them with the constant ¢ = % we get that

1

1 q¥
k 1 1 ar
* (‘HC (‘H W) K¢ (‘” W)) &

The proof is done.

We give our first corollary.
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Corollary 2.1.
Setting k = % and ¢ = 2 in Theorem 2.1 we get

The following Theorem will be used in evaluating the I integral.

Theorem 2.2.

The following equality holds for
l.geNE>0m<1
2.qeNk<0O,m>1

/ {%}xmﬂdx
1 x

_ (if’f((m—l)l—(l—l)m+(k+m1)f—k—1)

1=1 (m—=1)(m—k—1)I"%

m—1

+i E((m—1D)(1—1)—(0—=Dm+ (k+ 1)l —k—1)

=1 (m—l)(m—k—l)(l—l)mk

/ {%}xm%dm.
1 x

Proof. Observing the integral

Introducing a substitution w% =y we get

m—1

“fq\ m-2, qF [9 1
[ {8 2 [

a constant ¢ to minimize the clutter. Writing it as a sum and taking a fractional part, we get

oo q l
m— -1 1
/ {—qk }x 2dx = ¢ E / y—°or2 Hm—: dy
1 T =1 /-1y k

m—1
q k
k

Calling

Focusing onto the integral, we get

qk
Tk

Y

l

m—1

(m — 1)(m — k — 1)y ™

/l yflJrldy:_(k((mfl)yf(lfl)er(kJrl)lfkfl))
!

k4+m—1
k

_1y

-1

_ k(m=1I=(=Dm+k+1)l—k—1)

m—1

(m—-1)(m—-k—-1)1"%

k((m—1)(1—1)— (I — )m+ (k+ 1)l — k — 1)

_|_

m—1

(m—1)(m—k—1)(1 — 1)F
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Now summing each of the terms we get the result

/100 {%}mm_le‘: (i_k((mfl)l— (171)m+(k+m1_)ffk,1)

1=1 (m—1)(m—-k—-1)"%
L k(m-1)( -1~ (—Dm+(k+ 1)l —k—1)) ¢"F
+l§ (m—1(m—k—1)(1-1)"F ) k

The proof is done.

Corollary 2.2.
Setting m = %, q =2,k =6 in the last Theorem, we get

oo 19 — 18292
/ {%}x%_zdx - T\/; — 0.195441
1 X

The following Theorem is part of the I integral.

Theorem 2.3.

The following equality holds for
1. k= %,m >0
2.k>3,0<m< 5
30<k<im>0
4.0<k<3,m< 55
5.0 < k,O <m< Sk—1

‘<m+k><<le>m—k> (C <%+%‘1’q“ ‘C%*%’q“))

km 11 k(k —1)m? 11
~G e () - (+iea

k2m 11 qF T
+(m+k)((k71)mfk)c(_1+E+E’q)) Tk

Proof. The proof is similar to the proof we gave in Theorem 2.1 therefore it is omitted.

The following Theorem represents the I> integral.
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Theorem 2.4.

The following equality holds for
1.k € (0,1],m € (0,1)

2.k € (1,400),m € (0, 75)
Sk e (0,1),m e (0, gr)

LG} e

1~ k(m-1l-(-1)m+ (k+1)l—k—1)
(%

m—1

=1 (m-1)(m—-k—-1)I"%

m—1

= (m = Dm— k=1~
(RIS

e e (¢ (bt t) =< (G )

e (o) =< (G poe)

b (b ) (e )

Ck(m—1D1-1)—(l—=Dm+(k+1)l—k—1 et
By (( 1) — (I —1)m+(k+1) )).qk>

k2m

(m+k)((k_1)m_k><(*”%*%7‘1)) ' qi;)

Proof.  Observing the integral
11 k 2\
LA EG) e
o Jo T Y

‘We make a substitution 5=t from which we get

/o1 /o1 {q (%)k} G)mdydl‘:/Olaf/m+oo {t%}tmf—fdx

We will perform partial integration taking

J = /:OO {t%}tm%’fl(x) - _{%}ﬂkag(x) = x7/g(az) = %2

Jr

we get
1 1 m —+oo 2 1 1
g)’“ N gude — / g\ mdt = 1/ a4l my
LA @) = (L {2 e s Ak pre
1 tee q m—2 1 ! q m
== = ot dt + = - d
2/1 {t’“} + 2/0 P e
Substituting Theorems 2.2 and 2.3 the result follows. The proof is done. O

Corollary of the previously derived Theorem is given.
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Corollary 2.3.
Setting ¢ = 2,k = %,m = é we get that

1,1 1 i
Y\ 3 AN T7Inm
2 (= — =0. 29 ~
[ G} (5) awae oo~ B

The following Theorem gives a recursive sequence used to calculate I,, for arbitrary n.

Theorem 2.5.

The following relation holds for n > 3 and in the following cases
1.k € (0,1],m € (0,1)

2.k € (1,400),m € (0, 725)

Sk (0,1),m € (0, 5 1)

k m
n—/ /{ (-’L’n-’L’n 1. -1'2) }(L) dmndmn_L.del
TnTn—1...T2

V[0,1]

1 1
=—Ih_ ~Ch—1.
5 1+2 1

Proof.  Let us consider the integral

k m
nf/ /{ (wnwn 1- .’L'Q) }(L) dmndxn—l..dfrl
TnTpn—1...T2

V,,[0,1]

We will introduce a substitution =

/x/ // q | m-2dydTn_1..dz1
ni ! Y T2...Tn—1

Vi —2[0,1] T2 znl

x1

S =Y which gives us

Performing partial integration while taking

fz1) / // { }ym*QM’ dv = z1dzq
T2...Tn—1

Vp—2(0,1]  *2 lnl

we get that

I, — ﬁ / . /+°° q ym,g dydxp—_1...dzo
2 @y yk T2..Tn—1 o
v TR

1 Tn—-1Tn—2...22 k T "
+= / . {q ( nooonTer ) } ( ) drn_1dx,—o..dx
2 X1 Tn—-1Tn—-2...22
Vi —

1 1
- 5 n—1 1 iln—l
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The following Theorem simplifies the evaluation of the C,, integral and makes the recursive relation much more

useful.

Theorem 2.6.
Let Cy, denote the following integral

_/ //+°° { q} m—2 dydx,,...dxs
1 Yy r2x3...Tn
Vin—1[0,1]

To... Ty

Then the following equality holds.

Proof. We will need the following Lemma.

Lemma 2.1.
The following equality holds

1 m
C, = / / ( ) {q(mg...l‘n_z+1)k}dmn—l+1~--d$2~
0 e n—1+4+1

Vi—1-1[0,1]

Proof. We will prove the Lemma by induction on 1.

Base: for [ = 1 we have N
C, _/ / / { }ym_Qdyd:cn‘..dxg
1,'2 In

We will prove it using partial integration.

Taking f(z2) fo . fo o f+°° { 4 } =2 qydx.,...drs and dv = E'

) {q(xg.l.xn)k}dacn“.dmg

which is true since putting = 1 in the Lemma the expression follows.

Induction hypothesis: Let us assume that the formula is valid for 1 <! < n — 1 then from the induction hypothesis
the formula is valid for 4 1.

Inductive step: Using a substitution p = q

From partial integration we get

e e (5

Vi —2[0,1]

1
T2 Ty 41)

1 m
C, = / / ( ) {q(xg...:rn_l+1)k}dwn_l+1...dazg
0 Tn—1+1

Vi—1-1[0,1]

c :/1 / //"'oo q dpdxpn—_;...dxs
" 0 :czl' pk T3...Tn—|

Vip—2-1[0,1] 2o

on the hypothesis

we get
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Doing partial integration while taking
/ //+°° { q }dpdmn_l...dxg
:L'Q oy G —
p L3...Tn—1
Vp_2_1[0,1]  *2-

In' (z2)dzo _ (-1)!

dv =
Y 2 I
we get that
1 +1 m
i o (] () o)
C, = — . (—1 D E— To... Ty dzn_y...dx
/0 (l + 1)' ( ) (ZIZ’Q...:IZ’H,Z) q( 2 l) ! 2
Vi (141)—11[0,1]

Which is the induction hypothesis for [ + 1 and therefore the formula is true. O

Taking [ = n — 1 in the Lemma

nl(z 1 "
Cn :/0 g' 2)(_1)l // <x2.“mnil+1) {q(atg...xn_l+1)k}da7n—l+1'"d$2'

The theorem is proved. O

We proceed to give a simplified expression for the C),.

Theorem 2.7.
The following equality holds

_ nl = o n—1 o
Cn:(l qk kz/ (Ins —1lng)" (s l+)d8

7n+k 1
k

Proof. We begin with the form

Setting gzh = s we get

o= Gl [ () ) ()

Using the same idea as in Theorem 2.2 of rewriting the integral as a sum of integrals we get

Hnlq’: 3 “(s—1+1)

(Ins —Ing)"
RS Z/ P ds.

Cn =

79
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For arbitrary n € N the integral in question evaluates at

/ (s=14+1)(Ins)" ds

m+k—1
S k

(-1 ((7n71;€log(s))7n r (n +1, (mflilog(s))

=k(lns)"
(Ins) —
+k(1 )n ((*k«km;l) log(s))_ T (n+ 17 7(k7m+kl) log(s))
ne k—m+1
where I'(a, ) is the incomplete gamma function.
The theorem is proved. O

The following Corollary shows the usage of the recursive relation.

Corollary 2.4.
Let us employ the Theorems we have derived. From Theorem 2.5 we have the following relation and conditions
1.k € (0,1],m € (0,1)
2.k € (1,400),m € (0, 725)
3.k e (0,3),me (0, 575)
I, = %In_l + %Cn_l.

2¢me

Let us set k = ¢me,m = Tore 104 = 2,n = 3., where e is Fulers constant, ¢ golden ratio. From the relation in

Theorem 2.5 we get

1 1
Jo= —]o 4+ =
3 =5l + 202
We recall the Thereom 2.4 for the I integral , setting values there. For Cq integral we refer to the Theorem 2.7,

setting values there
3 lnsflnq)" Ys—1+1)
Z 7n+k 1 ds.

n

_ =D
Cn =2

1 1 1 x % 2y Tep
/ / / r 2 (—) dedydz = 0.106598
o Jo Jo Yz x

We omit the calculations due to the obvious reasons.

1qk

The result is

3. Conclusion

1. Generalized fractional integral of the order n is obtained. The simplification of the C;,, makes the recursive

relation much more useful.
2. Questions about whether other forms of the generalized fractional integral are obtainable arise.

3. We checked all the numerical results with Wolfram Alpha in order to be sure.
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