Triangle inequalities in inner-product spaces

Research Article

Martin Lukarevski ${ }^{1 *}$ and Dan Stefan Marinescu ${ }^{2 \dagger}$
1 Department of Mathematics and Statistics, University "Goce Delcev" - Stip, 2000, Stip, North Macedonia
2 Colegiul National "Iancu De Hunedoara", Hunedoara, Romania

Abstract

Tereshin's and Panaitopol's are known inequalities involving the median, circumradius and sides of the triangle. In this short note we generalize the inequalities to inner-product spaces. As an application we derive inequality for the median and the radius of the circumscribed sphere of an n-dimensional simplex.

MSC: 46B20

Keywords: Inner-product space - Tereshin's inequality • Panaitopol's inequality

Received 2022-02-11; Accepted 2022-03-19; Published 2022-04-14

1. Introduction

Richard Bellman writes in [1] 'There are three reasons for the study of inequalities: practical, theoretical, and aesthetic'. The theory of geometric inequalities contains many beautiful inequalities and so justifies the third, aesthetic reason to study them. Such examples of triangle inequalities are Euler's inequality $R \geq 2 r$ for the circumradius and the inradius, Weitzenböck's inequality $a^{2}+b^{2}+c^{2} \geq 4 \sqrt{3} K$, for the sum of the squares of the sides and the area K, Tsintsifas ineqality [7] $\frac{m_{a}}{w_{a}} \geq \frac{(b+c)^{2}}{4 b c}$ for the ratio of the median and the angle bisector etc. For the median m_{a} we have the following chain of inequalities

$$
\frac{b^{2}+c^{2}}{4 R} \leq m_{a} \leq \frac{R s}{a}=\frac{b c}{4 r} \leq \frac{(b+c)^{2}}{16 r}
$$

The first is Tereshin's inequality, the second is Panaitopol's inequality. By $a h_{a}=2 K, K=r s$, Panaitopol's inequality can be rewritten as

$$
\frac{R}{2 r} \geq \frac{m_{a}}{h_{a}} .
$$

[^0]The aim of this paper is to extend Panaitopol's and Tereshin's inequality to inner-product spaces and to generalize these inequalities for a triangle.

2. Some preliminary remarks

Let the real or complex normed space $(X,\|\cdot\|)$ be an inner-product space, that is, the norm comes from an inner-product. We present some result that we use in the next section.

Theorem 2.1.
(see [4]) Let $x_{1}, \ldots, x_{n} \in X, n \geq 2$. For any $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$ with $\alpha_{1}+\cdots+\alpha_{n}=1$, we have

$$
\begin{equation*}
\left\|x-\sum_{i=1}^{n} \alpha_{i} x_{i}\right\|^{2}=\sum_{i=1}^{n} \alpha_{i}\left\|x-x_{i}\right\|^{2}-\sum_{1 \leq i<j \leq n} \alpha_{i} \alpha_{j}\left\|x_{i}-x_{j}\right\|^{2} \tag{1}
\end{equation*}
$$

Theorem 2.2.
(Power of a point in inner-product spaces, see [5]) Let $x_{0}, x_{1}, x_{2} \in X$ such that $\left\|x_{1}-x_{0}\right\|=\left\|x_{2}-x_{0}\right\|=r, r \geq 0$. For $\alpha \in[0,1]$ let $w=\alpha x_{1}+(1-\alpha) x_{2}$. Then

$$
\begin{equation*}
\left\|w-x_{1}\right\| \cdot\left\|w-x_{2}\right\|=r^{2}-\left\|w-x_{0}\right\|^{2} \tag{2}
\end{equation*}
$$

Theorem 2.3.
(see [5]) Let $y_{0} \in X, r \geq 0$ and $x, x_{1} \in X$ such that $\left\|x-y_{0}\right\|<r,\left\|x_{1}-y_{0}\right\|=r$. Then there is unique pair $\left(y_{1}, \alpha\right)$ with $y_{1} \in X, \alpha \in(0,1)$ such that

$$
\begin{equation*}
x=\alpha y_{1}+(1-\alpha) x_{1}, \quad\left\|y_{1}-y_{0}\right\|=r . \tag{3}
\end{equation*}
$$

The following theorem is Ptolemy's inequality in inner-product spaces.

Theorem 2.4.
For all $x, y, z, t \in X$, it holds

$$
\begin{equation*}
\|x-y\| \cdot\|z-t\|+\|x-t\| \cdot\|y-z\| \geq\|x-z\| \cdot\|y-t\| \tag{4}
\end{equation*}
$$

Proof. See [2], [6].

3. The Panaitopol and Tereshin inequalities in inner-product spaces

Next we generalize the Panaitopol and Tereshin inequalities to inner-product spaces. The first result is generalization of Tereshin's inequality.

Theorem 3.1.

Let $y_{0}, x_{0}, x_{1}, \ldots, x_{n} \in X, n \geq 2$ be distinct and such that $x_{0}, x_{1}, \ldots, x_{n} \in S\left(y_{0}, r\right)=\left\{x \in X:\left\|x-y_{0}\right\|=r\right\}$. For $\alpha_{1}, \ldots, \alpha_{n} \geq 0$ with $\alpha_{1}+\cdots+\alpha_{n}=1$ let $\bar{x}=\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}$. Then we have

$$
\begin{equation*}
2 r\left\|x_{0}-\bar{x}\right\| \geq \alpha_{1}\left\|x_{0}-x_{1}\right\|^{2}+\cdots+\alpha_{n}\left\|x_{0}-x_{n}\right\|^{2} . \tag{5}
\end{equation*}
$$

Proof. By identity (1), we have

$$
\begin{align*}
\left\|\bar{x}-y_{0}\right\|^{2} & =\sum_{i=1}^{n} \alpha_{i}\left\|x_{i}-y_{0}\right\|^{2}-\sum_{1 \leq i<j \leq n} \alpha_{i} \alpha_{j}\left\|x_{i}-x_{j}\right\|^{2} \tag{6}\\
& <\sum_{i=1}^{n} \alpha_{i} r^{2}=r^{2},
\end{align*}
$$

so $\left\|\bar{x}-y_{0}\right\|<r$.
From Theorem 2.3 follows that for x_{0} and \bar{x} there is a pair $\left(y_{1}, \alpha\right), y_{1} \in X, \alpha \in(0,1)$ such that

$$
\bar{x}=\alpha y_{1}+(1-\alpha) x_{0}, \quad\left\|y_{1}-y_{0}\right\|=r .
$$

We observe that as a consequence of the first equation we have

$$
\left\|y_{1}-x_{0}\right\|=\left\|\bar{x}-y_{1}\right\|+\left\|\bar{x}-x_{0}\right\|
$$

Now we have

$$
\begin{align*}
2 r\left\|x_{0}-\bar{x}\right\| & \geq\left\|y_{1}-x_{0}\right\| \cdot\left\|x_{0}-\bar{x}\right\|=\left(\left\|\bar{x}-y_{1}\right\|+\left\|\bar{x}-x_{0}\right\|\right) \cdot\left\|x_{0}-\bar{x}\right\| \tag{7}\\
& =\left\|x_{0}-\bar{x}\right\|^{2}+\left\|\bar{x}-y_{1}\right\| \cdot\left\|\bar{x}-x_{0}\right\|
\end{align*}
$$

By identity (1), we have

$$
\begin{equation*}
\left\|\bar{x}-x_{0}\right\|^{2}=\sum_{i=1}^{n} \alpha_{i}\left\|x_{i}-x_{0}\right\|^{2}-\sum_{1 \leq i<j \leq n} \alpha_{i} \alpha_{j}\left\|x_{i}-x_{j}\right\|^{2} \tag{8}
\end{equation*}
$$

From Theorem 2.2 and (6) follows with the assumption $\alpha_{1}+\cdots+\alpha_{n}=1$

$$
\begin{align*}
\left\|\bar{x}-y_{1}\right\| \cdot\left\|\bar{x}-x_{0}\right\| & =r^{2}-\left\|\bar{x}-y_{0}\right\|^{2} \tag{9}\\
& =r^{2}-\sum_{i=1}^{n} \alpha_{i}\left\|x_{i}-y_{0}\right\|^{2}+\sum_{1 \leq i<j \leq n} \alpha_{i} \alpha_{j}\left\|x_{i}-x_{j}\right\|^{2} \\
& =\sum_{1 \leq i<j \leq n} \alpha_{i} \alpha_{j}\left\|x_{i}-x_{j}\right\|^{2} .
\end{align*}
$$

Finally, by (7), (8) and (9) follows the desired inequality (5).

Remark 3.1.
If $\alpha_{1}=\cdots=\alpha_{n}=\frac{1}{n}$, we obtain

$$
2 n r \cdot\left\|x_{0}-\frac{1}{n}\left(x_{1}+\cdots+x_{n}\right)\right\| \geq\left\|x_{0}-x_{1}\right\|^{2}+\cdots+\left\|x_{0}-x_{n}\right\|^{2}
$$

For $n=2$ that is Tereshin's inequality for triangle.

Remark 3.2.

Let $A_{i}, i=0,1, \ldots n$ denote the vertices of an n-dimensional simplex and let R be the radius of the circumscribed sphere. Let G_{0} be the centroid of the face opposite vertex A_{0}. Then we have

$$
2 n R \cdot A_{0} G_{0} \geq A_{0} A_{1}^{2}+\cdots+A_{0} A_{n}^{2}
$$

This inequality appears to be new for simplices. For tetrahedron $A_{0} A_{1} A_{2} A_{3}$ the inequality is

$$
6 R \cdot A_{0} G_{0} \geq A_{0} A_{1}^{2}+A_{0} A_{2}^{2}+A_{0} A_{3}^{2}
$$

see [3].

Next result is a generalization of Panaitopol's inequality to inner-product spaces.

Theorem 3.2.

Let $x, x_{1}, x_{2}, x_{3} \in X$. Then we have

$$
\begin{align*}
& \left\|2 x_{1}-x_{2}-x_{3}\right\| \cdot\left\|x_{2}-x_{3}\right\| \tag{10}\\
& \leq\left\|x-x_{1}\right\| \cdot\left\|x_{2}-x_{3}\right\|+\left\|x-x_{2}\right\| \cdot\left\|x_{1}-x_{2}\right\|+\left\|x-x_{3}\right\| \cdot\left\|x_{1}-x_{3}\right\| .
\end{align*}
$$

Proof. We consider the four elements in $X: x, x_{2}, x_{2}+x_{3}-x_{1}, x_{3}$ and apply Ptolemy's inequality (4) to obtain

$$
\begin{align*}
& \left\|x-x_{2}\right\| \cdot\left\|x_{2}-x_{1}\right\|+\left\|x-x_{3}\right\| \cdot\left\|x_{3}-x_{1}\right\| \tag{11}\\
& \geq\left\|x+x_{1}-x_{2}-x_{3}\right\| \cdot\left\|x_{2}-x_{3}\right\|
\end{align*}
$$

On the other hand by triangle inequality we have

$$
\begin{align*}
& \left\|x+x_{1}-x_{2}-x_{3}\right\| \cdot\left\|x_{2}-x_{3}\right\|+\left\|x-x_{1}\right\| \cdot\left\|x_{2}-x_{3}\right\| \tag{12}\\
& \geq\left\|2 x_{1}-x_{2}-x_{3}\right\| \cdot\left\|x_{2}-x_{3}\right\|
\end{align*}
$$

Adding (11) and (12), we obtain the inequality (10).

Remark 3.3.

If $x_{1}, x_{2}, x_{3} \in S(x, R)$, then

$$
\left\|2 x_{1}-x_{2}-x_{3}\right\| \cdot\left\|x_{2}-x_{3}\right\| \leq R\left(\left\|x_{1}-x_{2}\right\|+\left\|x_{2}-x_{3}\right\|+\left\|x_{3}-x_{1}\right\|\right) .
$$

This is Panaitopol's inequality $a m_{a} \leq R s$ in inner-product spaces.

References

[1] R. Bellman, Why study inequalities? in General Inequalities 2, Springer (1980)
[2] M. S. Klamkin, A. Meir, Ptolemy's inequality, chordal metric, multiplicative metric, Pac. J. Math. 101, No. 2, (1982), pp. 389-392
[3] D. S. Marinescu, V. Cornea, Inegalitati pentru mediane, bimediane, bisectoare, Recreatii Matematica 2, (2003) pp. 5-8
[4] D. S. Marinescu, M. Monea. M. Opincariu, M. Stroe, Some equivalent characterizations of inner product spaces and their consequences, Filomat 29, No. 7, (2015) pp. 1587-1599
[5] D. S. Marinescu, M. Monea, A proof of Garfunkel inequality and of some related results in inner-product spaces, Creat. Math. Inform. Vol. 26, No. 2 (2017), pp. 153-162
[6] I. J. Schoenberg, A remark on M. M. Day's characterization of inner-product spaces and a conjecture of L. M. Blumenthal, Proc. Amer. Soc. 3 (1952) pp. 961-964
[7] G. Tsintsifas, Problem E 2471, Amer. Math. Monthly 81 (1974), 82 (1975) pp. 523-524

[^0]: * Corresponding author
 * E-mail: martin.lukarevski@ugd.edu.mk
 \dagger E-mail: marinescuds@gmail.com

