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1. Introduction

Differential equations have a remarkable ability to predict the world around us. They are used in a wide variety

of disciplines, from biology, economics, physics, chemistry and engineering. They can describe exponential growth

and decay, the population growth of species or the change in investment return over time. As an example, consider

the propagation of light and sound in the atmosphere, and of waves on the surface of a pond. All of them may

be described by the same second-order partial differential equation, the wave equation, which allows us to think

of light and sound as forms of waves, much like familiar waves in the water. Conduction of heat, the theory of
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which was developed by Joseph Fourier, is governed by another second-order partial differential equation, the

heat equation. It turns out that many diffusion processes, while seemingly different, are described by the same

equation; the Black–Scholes equation in finance is, for instance, related to the heat equation. Also, for example

in medicine for modelling cancer growth or the spread of disease, in engineering for describing the movement of

electricity, in chemistry for modelling chemical reactions and to computer radioactive half life, in economics to

find optimum investment strategies, in physics to describe the motion of waves, pendulums or chaotic systems.

It is also used in physics with Newton’s Second Law of Motion and the Law of Cooling and in Hooke’s Law for

modeling the motion of a spring or in representing models for population growth and money flow circulation.

Fractional calculus has gained importance during the past three decades due to its applicability in diverse fields

of science and engineering. The notions of fractional calculus may be traced back to the works of Euler, but the

idea of fractional difference is very recent. Fractional differential equations (FDEs) are obtained by generalizing

differential equations to an arbitrary order. Since fractional differential equations are used to model complex

phenomena, they play a crucial role in engineering, physics and applied mathematics. Therefore they have

been generating increasing interest from engineers and scientist in recent years. Since FDEs have memory,

nonlocal relations in space and time, complex phenomena can be modeled by using these equations. Due to

this fact, materials with memory and hereditary effects, through strongly anomalous media. Indeed, we can find

numerous applications in viscoelasticity, electro-chemistry, signal processing, control theory, porous media, fluid

flow, rheology, diffusive transport, electrical networks, electromagnetic theory and probability, signal processing,

and many other physical processes are diverse applications of FDEs [1–6].

Recently, there has been a significant development in fractional differential and partial differential equations (see,

e.g., [7] and the references therein).

The study of existence and uniqueness, periodicity, asymptotic behavior, stability, and methods of analytic and

numerical solutions of fractional differential equations have been studied extensively in a large cycle works; Es-

pecially, The study of existence and uniqueness of solution of fractional partial differential equations are then

proved by the well-known Lax–Milgram theorem, Energy estimate and fixed point theorem. Among them, we

only mention here the papers [8–21].

The present paper is devoted to the study of initial-boundary value problem for a parabolic equation with time-

fractional derivative with Dirichlet condition by Faedo-Galerkin method and a priori estimate, which has not been

studied so far.

2. Preliminaries and functional spaces

Let Γ(·) denote the gamma function. For any positive integer 0 < α < 1, Caputo derivative and Riemann Liouville

derivative are, respectively, defined as follows:
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(i) The left Caputo derivatives:

C
0 D

α
t u (x, t) :=

1

Γ (1− α)

∫ t

0

∂u (x, τ)

∂τ

1

(t− τ)α
dτ, (1)

the right Caputo derivatives:

C
t D

α
Tu (x, t) :=

−1

Γ (1− α)

∫ T

t

∂u (x, τ)

∂τ

1

(τ − t)α dτ.

(ii) The left Riemann-Liouville derivatives:

R
0 D

α
t u (x, t) :=

1

Γ (1− α)

∂

∂t

∫ t

0

u (x, τ)

(t− τ)α
dτ, (2)

the right Riemann-Liouville derivatives:

R
t D

α
T v(t) =

−1

Γ (1− α)

∂

∂t

T∫
t

u (x, τ)

(t− τ)α
dτ . (3)

Many authors think that the Caputo’s version is more natural because it allows the handling of inhomogeneous

initial conditions in a easier way. Then definitions (2.1) and (2.2) are linked by the following relationship, which

can be verified by a direct calculation:

R
0 D

α
t u (x, t) = C

0 D
α
t u (x, t) +

u (x, 0)

Γ (1− α) tα
. (4)

Definition 2.1.
[10] For any real σ > 0, we define the semi-norm:

|u|2lHσ(I) :=
∥∥∥R0 Dσ

t u
∥∥∥2

L2(I)
,

and norm:

‖u‖lHσ(Ω) :=
(
‖u‖2L2(I) + |u|2lHσ0 (I)

) 1
2
, (5)

we then define lHσ
0 (I) as the closure of C∞0 (I) with respect to the norm ‖·‖lHσ0 (I) .

Definition 2.2.
For any real σ > 0, we define the semi-norm:

|u|2rHσ0 (I) := ‖rtDσ
Tu‖2L2(I) ,

and norm:

‖u‖rHσ0 (I) :=
(
‖u‖2L2(I) + |u|2rHσ0 (I)

) 1
2
, (6)

we then define rHσ
0 (Ω) as the closure of C∞0 (Ω) with respect to the norm ‖·‖rHσ0 (Ω) .
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Definition 2.3.
For σ ∈ R+, σ 6= n+ 1

2
, we define the semi-norm:

|u|cHσ(I) =

∣∣∣∣( RDσ
t u,

R
t D

σu
)
L2(I)

∣∣∣∣1/2

and norm:

‖u‖cHσ(I) = (‖u‖2L2(I) + |u|2cHσ(I))
1/2.

we then define cHσ(I) as the closure of C∞0 (I) with respect to the norm ‖·‖cHσ(I) .

Lemma 2.1.
[10] For any real σ ∈ R+ and let I = (0, T ), if u ∈ lHα(I) and v ∈ C∞0 (I), then

(RDσ
t u(t), v(t))L2(I) = (u(t), Rt D

σv(t))L2(I).

Lemma 2.2.
[10, 11] For 0 < σ < 2, σ 6= 1, u ∈ H

σ
2

0 (I),we have

RDσ
t u(t) = RD

σ
2
R

t D
σ
2
t u(t).

Lemma 2.3.
[10, 11] For σ ∈ R+, σ 6= n+ 1

2
, the semi- norms |.|lHσ(I), |.|rHσ(I) and |.|cHσ(I) are equivalent. Then we pose

|.|lHσ(I) =̃ |.|rHσ(I) =̃ |.|cHσ(I) .

Lemma 2.4.
[10] For any real σ > 0, the space rHσ

0 (I) with respect to the norm (2.20) is complete.

Definition 2.4.
We denote by L2 (0, T, L2 (0, 1)) := L2 (Q) the space of functions which are square integrable in the Bochner
sense, with the scalar product

(u,w)L2(0,T,L2(0,1)) =

∫ T

0

((u, ·) , (w, ·))L2(0,1) dt. (7)

Since the space L2 (0, T ) is a Hilbert space, it can be shown that L2 (0, T, L2 (0, 1)) is a Hilbert space as well. Let
C∞ (0, T ) denote th space of infinitely diffrentiable functions on (0, T ) and C∞0 (0, T ) denote th space of infinitely
diffrentiable functions with compact support in (0, T ) .

Lemma 2.5.
Suppose that Ω is a bounded or unbounded domain in Rn. Let un(x), u(x) be real functions in Lp(Ω); such that
un strongly converges to u in Lp(Ω). Then, if 1 ≤ p <∞, un has a subsequence almost everywhere converging to
u; if p = 1, then un itself almost everywhere converges to u.
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3. Position and solvability of problem

Consider the following initial boundary value problem for a nonlinear parabolic equation


C
0 D

α
t v −∆v = f (x, t) (x, t) ∈ Ω× (0, T )

v (x, t) = 0, (x, t) ∈ ∂Ω× (0, T )

v (x.0) = v0 (x) . x ∈ Ω

Now, we shall introduce a new function :

u(x, t) = v(x, t)− U(x) =⇒ v(x, t) = u(x, t) + U(x),

where

ϕ(x) = U(x).

So, we get : 
C
0 D

α
t u−∆u = f (x, t) (x, t) ∈ Ω× (0, T ) ≡ Q.

u (x, t) = 0, (x, t) ∈ ∂Ω× (0, T )

u (x.0) = 0. x ∈ Ω

(8)

Where Ω is bouded domain in Rn with the smooth boundary ∂Ω, f ∈ L2
(
(0, T ) , L2 (Ω)

)
≡ L2 (Q). However , we

solve this problem by just following the three major steps described by the Faedo-Galerkin method.

(i) Being the eigenfunctions of the Laplacien operator subject to the Dirichlet boundary conditions

 −∆wj = λjwj ,

wj|∂Ω = 0.
(9)

We also normalize wj such that ‖wj‖L2(0,1) = 1. By the elliptic operator theory, {wj , j ∈ N} forms base functions

in H1
0 (Ω), and if ∂Ω is C∞

(
Ω
)
, j ∈ N. Now we use the Faedo-Galerkin method to find the approximative solution.

Let m be a given positive integer and

um =
m∑
i=1

gim (t)wi (x) . (10)

Which satisfies the following identities


(
C
0 D

α
t um, wi

)
L2(Q)

− (∆um, wi)L2(Q) = (f, wi)L2(Q) , i = 1, ...,m

(0, wi)L2(Q) = 0,
(11)

where (., .) denotes the inner product in L2 (Q).
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Thus,(11) is reducted to the initial value problem for a system of first-order differential equations with respect to

gim : 
C
0 D

α
t gim + λigim = fi (t) , i = 1, ...,m

gim (0) = 0, i = 1, ...,m
(12)

with fi = (fi, wi) ∈ L2 (0, T ) . Thus, there are different methods to solve fractional differential equations ana-

lytically or by the usual iteration method used in ODE. One of the most common and widely used methods is

the Laplace transform. So, we can conclude that the problem (12) admits a unique local solution gim (t) such

gim ∈ C [0, T ], and C
0 D

α
t gim ∈ L2 (0, T ) . (for other methods see references).

(ii) We now try to get the a priori estimates for the approximate solution um (x, t) obtained in the previous step.

Multipliying both sides of equations in (11) by gim (t) , summing with respect to i and integrating over Q, we get

∥∥∥C0 D α
2
t um

∥∥∥2

L2(Q)
+ ‖∇um‖2L2(Q) = (f, um)L2(Q) . (13)

Using the Cauchy inequality with ε, it comes

∥∥∥C0 D α
2
t um

∥∥∥2

L2(Q)
+ ‖∇um‖2L2(Q)

≤ 1

2ε

∫ T

0

‖f‖2L2(Ω) dτ +
ε

2

∫ T

0

‖um‖2L2(Ω) dτ (14)

By using Poincaré inequality, there exists a constant cΩ, depending only on Ω we find

(
1

cΩ
− ε

2

)
‖um‖2L2(Q) +

∥∥∥C0 Dα
t um

∥∥∥2

L2(Q)
≤ CT ∀t ∈ [0, T ] . (15)

where CT is a positive constant depending only on
∫ T

0
‖f‖2 dτ and T . It follows from (15) that

‖um (t)‖2L2(Q) =

m∑
i=1

g2
im (t) ≤ CT ∀t ∈ [0, T ]

This implies that the solution to the initial value problem for the system of ODE (12) can be extended to [0, T ]

and on [0, T ] , we have the following uniform a priori estimates

um uniformly bounded in L2 ([0, T ] , H1
0 (Ω)

)
,

C
0 D

α
t um uniformly bounded in L2 ([0, T ] , L2 (Ω)

)
.

(iii) Since any bounded set in a reflexive Banach space is weakly compact, i.e., any sequence in a bounded set has

a weakly converging subsequence. Then, there is a subsequence of um, still denoted by um such that

 um −→ u weakly in L2
(
[0, T ] , H1

0 (Ω)
)

C
0 D

α
t um −→ C

0 D
α
t u weakly in L2 (Q)

. (16)
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We know that according to Rellich-Kondrachoff’s theorem (see Lions-Magenes [14]; the embedding of H1(Q) in

L2 (Q) is compact. So there is a subsequence of um, still denoted by um such that um strong converges to u in

L2
(
[0, T ] , H1

0 (Ω)
)
.

By Lemma 5 there is a subsequence of um, still denoted by um almost everywhere converges to u in Q.

Passing to the limit in (11), since each term on the left-hand side of (11) is weakly convergent in L2 ([0, T ]), we

obtain that the following holds in L2 ([0, T ]) :

(
C
0 D

α
t u,wi

)
− (∆u,wi) = (f, wi) , ∀i = 1, 2.... (17)

Since {wi, i ∈ N} is a base in L2 (Ω), we infer from (17) that the following holds in L2
(
[0, T ] , L2 (Ω)

)
:

C
0 D

α
t u−∆u = f (18)

Since all C0 D
α
t u , ∆u, and f belong to L2

(
[0, T ] , L2 (Ω)

)
, so (18) also belongs to L2

(
[0, T ] , L2 (Ω)

)
.Thus, we

have the following result.

Theorem 3.1.
Suppose that f ∈ L2

(
[0, T ] , L2 (Ω)

)
. The problem (8) admits a solution u such that

u ∈ L2
(

[0, T ] ,lH
α
2 (Ω)

)
∩ L2 ([0, T ] , H1

0 (Ω)
)
.

Proof. Existence of a solution has been proved through three steps described previously.

4. Estimation a priori “Uniqueness of the solutions”

The method used here is one of the most efficient functional analysis methods and important techniques for

solving partial differential equations, which has been successfully used in investigating the existence, uniqueness,

and continuous dependence of the solutions of PDE’s, the so-called a priori estimate method or the energy-

inequality method. This method is essentially based on the construction of multiplicators for each specific given

problem, which provides the a priori estimate from which it is possible to establish the solvability of the posed

problem as a solution of the operator equation

Lu = Fourier, (19)

where L := (Laplace,`), with domain of definition B consisting of functions u ∈ L2(Q), such that u, CDα
t u,

∂u
∂x
∈

L2(Q).

The operator L is considered from B to F, where B is the Banach space consisting of all functions v(x, t) having

a finite norm

‖u‖2B =
∥∥∥C0 D α

2
t u
∥∥∥2

L2(Q)
+ ‖u‖2L2(QT ) .
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with F is the Hilbert space consisting of all elementsFourier ≡ (f, `) , where `u = 0; for which the norm in

L2 (Q) is finite.

Theorem 4.1.
For any function u ∈ B, we have the inequality

‖u‖B ≤ k ‖Lu‖L2(Q) (20)

where k is a positive constant independent of u.

Proof. Multiplying the equation (3.1) by the following function :

Mu = u(x, t),

and integrating over Q, we get :

∫
Q

Laplaceu ·Mudxdt

=

∫
Q

C
0 D

α
t u(x, t) · u(x, t)dxdt−

∫
Q

(∆u) · u(x, t)dxdt

=

∫
Q

f(x, t) · u(x, t)dxdt.

As u(x, 0) = 0, we have C
0 D

α
t u(x, t) = R

0 D
α
t u(x, t), so by applying Lemmas 1, 2 and 3, we obtain

∫
Q

C
0 D

α
t u(x, t).u(x, t)dxdt

= (C0 D
α
t u(x, t), u(x, t))L2(Q)

= (C0 D
α
2
t

C
0 D

α
2
t u(x, t), u(x, t))L2(Q) (According to Lemma 2)

= ( C0 D
α
2
t u(x, t),Ct D

α
2
T u(x, t))L2(Q) (According to Lemma 1)

= |u|2cHα(Q)
∼= |u|2

cHα(Q) =
∥∥∥C0 D α

2
t u
∥∥∥2

L2(Q)
, (According to Lemma 3)

and by integration by parts over Q; we get :

−
∫
Q

∫
Q

(∆u) · u(x, t)dxdt =

∫
Q

(∇u)2 dxdt.

So, we obtain :

∫
Q

(
C
0 D

α
t u−∆u

)
·Mvdxdt

∼=
∥∥∥C0 D α

2
t u
∥∥∥2

L2(Q)
+ ‖∇u‖2L2(Q)

=

∫
Q

f(x, t) · u(x, t)dxdt.
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By using the Cauchy inequality with ε, it comes

∫
Q

f(x, t).u(x, t)dxdt ≤ 1

2ε

∫
Q

|f(x, t)|2 dxdt+
ε

2

∫
Q

|u(x, t)|2 dxdt,

By using Poincaré inequality, there exists a constant cΩ, depending only on Ω we find

∥∥∥C0 D α
2
t u
∥∥∥2

L2(Q)
+

(
1

cΩ
− ε

2

)
‖u‖2L2(Q)

≤ 1

2ε
‖f‖2L2(Q) .

Finally, it follows that ∥∥∥C0 D α
2
t u
∥∥∥2

L2(Q)
+ ‖u‖2L2(Q) ≤ C ‖f‖

2
L2(Q) ,

with

C =
1

2ε

 1

min
{

1;
(

1
cΩ
− ε

2

)}
 .

Therefore, we obtain that

‖v‖B ≤ k ‖Lv‖F , where k =
√
C.

Hence the uniqueness of the solution.

Remark 4.1.
This inequality

‖v‖B ≤ k ‖Lv‖F

is gives the uniqueness of the solution, indeed:
Let v1 and v2 two solutions, so {

Lv1 = Fourier
Lv2 = Fourier

=⇒ L(v1 − v2) = 0

then

‖v1 − v2‖B ≤ k ‖0‖F =⇒ ‖v1 − v2‖B ≤ 0 =⇒ v1 − v2 = 0

which gives the uniqueness of the solution.
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