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1. Introduction

Over the last few decades, linear algebra has been increasingly popular. This subject appeals to people because

of its beauty and ties to a variety of other pure and applied fields. In both the theoretical and practical evolution

of the subject In many applications, it is necessary to determine the “length” of vectors. Norm is used for this

purpose. On a vector space, functions are considered. We explain why one should do so in this informative essay.

would like to investigate several types of norms in a real vector space.

A matrix norm is a measurement of the size of its elements. It is a method of determining the ”size” of a matrix

that is unrelated to the number of rows or columns in the matrix.

A matrix norm is a real integer that represents the magnitude of the matrix. We will consider the vector spaces

Mn(R) and Mn(C) of square n× n matrices for the sake of clarity.

∗ Corresponding author

∗ E-mail: analysis2003@yahoo.com
† E-mail: rahmawaleed629@yahoo.com

1

mailto: analysis2003@yahoo.com
mailto: rahmawaleed629@yahoo.com


Norm equalities and inequalities for operator matrices

The majority of the conclusions are likewise valid for the B(H) and B(H) spaces of rectangular mn matrices.

The rationale behind matrix norms is that they should perform ”good” when it comes to matrix multiplication

because n× n matrices can be multiplied.

Lemma 1.1.
[1] Let M,N ∈ LB(H). Then

(i) ω

([
M 0
0 N

])
= max{ω(M), ω(N)},

(ii) ω

([
M N
N M

])
= max{ω(M +N), ω(M −N)},

(iii) ω

([
M N
−N M

])
= max{ω(M + iN), ω(M − iN)}.

Theorem 1.1.
[? ] Let α1, . . . , αn ∈ K and A1, . . . , An ∈ B(H). Then one has the inequalities:
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where (1) should be seen as all the 9 possible configurations.

Corollary 1.1.
[? ] With the assumptions in Theorem 1.1, one has the inequality:
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where p > 1, 1
p

+ 1
q

= 1.

Remark 1.1.
[3] For the case of two operators, we can state that

||B + C||2 ≤ ||B∗B + C∗C||+ 1

2
||B∗C + C∗B||2 +

1

2
(3)
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for any B, C ∈ B(H). If in this inequality we choose B = A, C = A∗, then we get

||A+A∗||2 ≤ ||A∗A+AA∗||+ 1

2
||A2 + (A∗)2||2 +

1

2
(4)

for any A ∈ B(H).
Now, if A = B + C with B = (A+A∗)/2, C = (A−A∗)/2, i.e., B and C are the Cartesian decomposition of A,
then applying (3) for B and C as above will give the inequality

||A||2 ≤ 1

2
||A∗A+AA∗||+ 1

4
||A∗A−AA∗||2 +

1

2
(5)

for any A ∈ B(H).

Theorem 1.2.
[3] For any two bounded linear operators C, D we have

w(CD) ≤ 4w(C)w(D). (6)

If C and D commute, i.e., CD = DC, then

w(CD) ≤ 2w(C)w(D). (7)

To get closer to the elusive inequality

w(CD) ≤ w(C)w(D). (8)

Theorem 1.3.

[6] Let

[
A B
B∗ C

]
∈M2(Mn) is positive semidefinite. Then

|trAC − trB∗B| ≤ trAtrC − |trB|2. (9)

2. Main Results

In this section, we present some new results inequalities for operator Matrices.

Theorem 2.1.
If M,N are normal matrices, then

1.

∣∣∣∣∣∣∣∣[ M 0
0 N

]∣∣∣∣∣∣∣∣ = max{||M ||, ||N ||}.

2.

∣∣∣∣∣∣∣∣[ M N
N M

]∣∣∣∣∣∣∣∣ = max{||M +N ||, ||M −N ||}.

Proof. 1. Since, M and N are Hermitian matrices; M and N are normal matrices. So

W (M) = ||M || and W (N) = ||N ||.

3



Norm equalities and inequalities for operator matrices

also, from Lemma 1.1; we have

W


 M 0

0 N


 = max{W (M),W (N)}

and the matrix

 M 0

0 N

 is Hermitian matrix

W


 M 0

0 N


 =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 M 0

0 N


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

So, we get the result.

2. Suppose M , N are Hermitian, then M +N and M −N are Hermitian by using the similar way of (1) we

obtain (2).

Now; we present special case for theorem (1.1) as follows.

Theorem 2.2.
Let A1, . . . , An ∈ B(H). Then one has the inequalities
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Proof. We know that by Theorem (1.1)
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In the following corollary we present the special case for Theorem (2.2).

Corollary 2.1.
By taking p = q = 2, αi = 1 ∀ i = 1, . . . , n in corollary (1.1) we get the inequality
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Theorem 2.3.
Let A1, . . . , An ∈ B(H). Then one has the inequalities
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Theorem 2.4.
If A ∈Mn(C), then

||A|| ≤ ||I +A∗A||+ 1

2
||A+A∗||+ 1

2

Proof. from the inequality (3) we have

||B + C||2 ≤ ||B∗B + C∗C||+ 1

2
||B∗C + C∗B||2 +

1

2

By letting B = I, C = A in (??) we get

||I +A|| ≤ ||I +A∗A||+ 1

2
||A+A∗||+ 1

2
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We know also ||A|| ≤ ||I +A||

So,

||A|| ≤ ||I +A∗A||+ 1

2
||A+A∗||+ 1

2

Corollary 2.2.

If we put A = I in (5) and taking ||A|| = ||A||1, we have after some calculations 1 ≤ 1

2
||2I||+ 1

2
and hence 1 ≤ 3

2
.

Theorem 2.5.
If A,B are double commute i.e AB = BA and AB∗ = B∗A, then

w(AB) ≤ w(B)Si(A)

Proof. If ||A|| = ||A||2 = Si(A) and the result follows by putting ||A|| = Si(A) in (8).

Corollary 2.3. 1. For any two bound linear operator A,B we have

w(AB) ≤ 4||A|| ||B||

2. If A,B ∈Mn(C) and AB = BA, then

w(AB) ≤ 2||A|| ||B||

To illustration this Remark we know that w(A) ≤ ||A|| ∀ A ∈Mn(C) and using inequality (6) and (7).

Lemma 2.1.
If A,B ∈ B(H), then

1. r(A) = ||A
1
2 ||2 ≤ ||A||

2. ||A
1
2B

1
2 ||2 ≤ w(AB) ≤ ||AB||

Proof. 1. we know that

r(AB) = ||A
1
2B

1
2 ||2

put B = I;

r(A) = ||A
1
2 ||2

also;

||An||m ≤ ||Anm|| ∀ n,m ∈ R

so;

r(A) = ||A
1
2 ||2 ≤ ||A||

7



Norm equalities and inequalities for operator matrices

2.

r(AB) = ||A
1
2B

1
2 ||2 ≤ w(AB)

because r(AB) ≤ w(AB) ∀ A,B ∈ B(H) also; we know that w(AB) ≤ ||AB|| so,

||A
1
2B

1
2 ||2 ≤ w(AB) ≤ ||AB||

Theorem 2.6.

Let

[
A I
I C

]
∈Mn(C) is positive semidefinite. Then

|tr AC − n| ≤ tr A tr C − n2.

Proof. By Theorem 1.3 we have;

|tr AC − trB∗B| ≤ tr A tr C − |tr B|2

and by letting B = I = B∗, we have

|trAC − tr I| ≤ tr A tr C − |tr I|2

and since tr I = n we get the result.
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