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1. Introduction

The study of convex functions offered provoking results in multiple areas of mathematics e.g, mathematical

economics, linear programming, optimization, dynamic systems and control theory. Nowadays, different kinds of

integral inequalities concerning convex functions and their generalizations are getting attention of researchers to

work on. More information can be found in the references [3–7, 15, 16, 19].

Definition 1.1.
A mapping F : I ⊆ R→ R is known to be convex, if

F (`r + (1− `)s) ≤ `F (r) + (1− `)F (s) (1)

If ∀ r, s ∈ I, ` ∈ [0, 1]
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Integral inequalities for generalized approximately h-convex functions on fractal sets via generalized local fractional integrals

Famous inequality derived by J.Hadamard [9] in 1881 is known as Hermite-Hadamard Inequality. Let F : I ⊆

R→ R, be a convex function if r, s ∈ I and r < s, then

F
( r + s

2

)
≤ 1

s− r

∫ s

r

F (y)dy ≤ F (r) + F (s)

2
(2)

S. Varosanec [26] presented the notion of h−convex functions.

Definition 1.2.
Let h : J ⊆ R be non negative function and h 6= 0. A non negative function F : I = [r, s] → R is known to be
h-convex, if for all ` ∈ [0, 1].

F (`r + (1− `)s) ≤ h(`)F (r) + h(1− `)F (s) (3)

In [12] Kashuri et al defined approximately h-convex function. Consider (X, ||.||I) be a normed quasi linear space,

and I is nonempty convex subset of X, d : X ×X → R.

Definition 1.3.
Consider h : [0, 1]→ R be non negative function and h 6= 0. A function F : I → R is called to be approximately
h-convex, if

F (`r + (1− `)s) ≤ h(`)F (r) + h(1− `)F (s) + d(r, s) (4)

holds for all ` ∈ (0, 1) and r, s ∈ I

Sarikaya and Ertuǧral in [17] presented the left-sided and right-sided generalized fractional integral operators, as:

r+IϕF () =

∫
r

ϕ(−`)
(−`) F (`)d`, > r (5)

s−IϕF () =

∫ s ϕ(`−)

(`−)
F (`)d`, < s (6)

Hadamard inequality for the generalized fractional integral operators is established by Sarikaya and Ertuǧral in

[17].

Theorem 1.1.
Let F : [r, s] → R be a convex function on [r, s], with r < s, then for fractional integral operators the following
inequality holds:

F
(r + s

2

)
≤ 1

2Λ(1)
[r+IϕF (s) + s−IϕF (r)] ≤ F (r) + F (s)

2
(7)

where the mapping Λ(x) : [0, 1]→ R is given by

Λ() :=

∫
0

ϕ((s− r)`)
`

d` (8)

Kashuri et al. [11], established inequalities of Hermite Hadamard type for approximately h-convex functions

involving generalized fractional integrals.
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Theorem 1.2.
Let F : [r, s] → R be an approximately h-convex on [r, s] , with r < s. Then for generalized fractional integrals
the following inequality holds:

1

2h( 1
2
)
F
(r + s

2

)
−A1 ≤

1

2Λ(1)
[r+IϕF (s) + s−IϕF (r)]

≤ [F (r) + F (s)]

2Λ(1)

∫ 1

0

ϕ((s− r)`)
`

[h(`) + h(1− `)]d`+ d(r, s)

where,

A1 :=
1

2Λ(1)h( 1
2
)

∫ s

r

ϕ(s−)

s− d(, r + s−)d.

We now discuss some preliminaries of local fractional calculus theory introduced by Yang in [28, 29]. These

concepts and consequences are linked with fractal order derivatives and integrals.

If rς1, r
ς
2, r

ς
3 ∈ Rς (0 < ς ≤ 1) , then

• rς1 + rς2 ∈ Rς , rς1rς2 ∈ Rς ,

• rς1 + rς2 = rς2 + rς1 = (r1 + r2)ς = (r2 + r1)ς ,

• rς1 + (rς2 + rς3) = (r1 + r2)ς + rς3,

• rς1r
ς
2 = rς2r

ς
1 = (r1r2)ς = (r2r1)ς ,

• rς1(rς2r
ς
3) = (rς1r

ς
2)rς3,

• rς1(rς2 + rς3) = rς1r
ς
2 + rς1r

ς
3,

• rς1 + 0ς = 0ς + rς1 = rς1, and rς11ς = 1ςrς1 = rς1

• If rς1 < rς2, then rς1 + rς3 < rς2 + rς3,

• If 0ς < rς1, 0
ς < rς2, then 0ς < rς1.r

ς
2,

Local fractional derivative and integral on Rς are defined as,

Definition 1.4.
([28, 29]) A non-differentiable function F : R→ Rς , y→ F (y) is local fractional continuous at y0, if for any ε > 0,
there exists δ > 0 such that

|F (y)− F (y0)| < ες

holds |y− y0| < δ, with ε, δ ∈ R. If F (y) is local continuous on (c, d), and we donate F (y) ∈ Cς(c, d) .

Definition 1.5.
([28, 29]) Local fractional derivative of the function F (y) of order ς at y = y0 can be defined as

F (ς)(y0) =
dςF (y)

d`ς

∣∣∣∣
y=y0

= lim
y→y0

Γ(1 + ς)(F (y)− F (y0))

(y− y0)
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Integral inequalities for generalized approximately h-convex functions on fractal sets via generalized local fractional integrals

Dς(b, c) is ς-local derivative set. If there exists F ((K+1)ς)(y) =

(n+1)times︷ ︸︸ ︷
Dς

y...D
ς
y F (y) for any y ∈ I ⊆ R, we denote

F ∈ D(n+1)ς(I), and n = 0, 1, 2, ...

Definition 1.6.
([28, 29]) Let F (y) ∈ Cς [c, d]. Local fractional integral of F (w) can be defined by

bI
ς
cF (y) =

1

Γ(1 + ς)

∫ c

b

F (`)(d`)ς =
1

Γ(1 + ς)
lim

∆`→0

N−1∑
f=0

F (`f)(∆`f)
ς ,

Where c = `0 < `1 < ... < `N−1 < `N = d, [`f, `f+1] is partition of [c, d], ∆`f = ∆`f+1 − ∆`f,∆` =
max{`0, `1...`N−1}.

Note that cI
ς
cF (y) = 0 and cI

ς
dF (y) = −dIςcF (y) if c < d. We denote F (y) ∈ Iςy [c, d] if there existsbI

ς
yF (y) for any

y ∈ [b, c].

Lemma 1.1.
([28, 29])

1. Let g(y) = f(ς)(y) ∈ Cς [c, d], then

bI
ς
cg(y) = f(d)− f(c)

2. Let g(y), f(y) ∈ Dς [c, d] and g(ς)(y), f(ς)(y) ∈ Cς [b, c], then

bI
ς
cg(y)f(ς)(y) = g(y)f(y)|cb − bI

ς
cg

(ς)(y)f(y).

Lemma 1.2.
([28, 29])

dςysς

duς
=

Γ(1 + sς)

Γ(1 + (s− 1)ς)
y(s−1)ς ;

1

Γ(ς + 1)

∫ c

b

ysς(du)ς =
Γ(1 + sς)

Γ(1 + (s+ 1)ς)
(d(s+1)ς − c(s+1)ς), s > 0

Lemma 1.3.
([28, 29])

bI
ς
c1ς =

(d− c)ς

Γ(1 + ς)

Lemma 1.4.
(([28, 29]) (Generalized Hölder’s inequality) Let p, q > 1 with p−1 + q−1 = 1, let g(w), f(w) ∈ Cς [c, d] ,Then

1

Γ(ς + 1)

∫ c

b

∣∣g(y)f(y)
∣∣(dy)ς ≤

(
1

Γ(ς + 1)

∫ c

b

∣∣g(y)
∣∣p(dy)ς

) 1
p
(

1

Γ(ς + 1)

∫ c

b

∣∣f(y)
∣∣q(dy)ς

) 1
q
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Recall generalized beta function:

Bς(y, x) =
1

Γ(1 + ς)

∫ 1

0

`(y−1)ς(1− `)(x−1)ς(d`)ς , y > 0, x > 0 (9)

Local fractional theory has solid applications in control theory, communication engineering, random walk process

and Physics [1, 13, 27, 30]. Many researchers studied various types of integral inequalities for generalized definitions

of convexity on fractal sets.[2, 8, 10, 14, 18]. Wenbing Sun established various types of Integral inequalities for

different generalizations of convex functions in fractal theory [20–25]. According to our knowledge the study of

approximately h−convex functions has not been carried out in fractal domain. In this research paper we study

the concept of generalized approximately h−convex functions on fractal sets, we also present a novel fractional

integral operator on fractal sets through which we establish generalized local fractional integral inequalities.

2. Main Results

We define a function ϕβ : [0,∞)→ [0,∞) satisfying the following condition, if forXς , Y ς , Zς > 0 and independence

of aς , bς > 0

1

Γ(1 + ς)

∫ 1

0

ϕς(`
ς)

`ς
(d`)ς < +∞

1

Xς
≤ ϕς(b

ς)

ϕς(aς)
≤ Xς , for

1

2ς
≤ bς

aς
≤ 2ς

ϕς(a
ς)

a2ς
≤ Y ς ϕς(b

ς)

b2ς
for bς < aς∣∣∣∣∣ϕς(aς)a2ς

− ϕς(b
ς)

b2ς

∣∣∣∣∣ ≤ Zς |aς − bς |ϕς(aς)a2ς
for

1

2ς
≤ bς

aς
≤ 2ς

Now we define generalized local fractional integral operators,

r+I
ς
ϕF () =

1

Γ(1 + ς)

∫
r

ϕς(−`)ς

(−`)ς F (`)(d`)ς , > r (10)

s−I
ς
ϕF () =

1

Γ(1 + ς)

∫ s ϕς(`−)ς

(`−)ς
F (`)(d`)ς , < s (11)

Definition 2.1.
Suppose h : J → R be non negative function and hς 6≡ 0. A function F : I → Rς(0 < ς ≤ 1) be ς order fractal
dimensional. If F be non-negative (F ≥ 0ς) and for r, s ∈ I and ` ∈ (0, 1), then

F (`r + (1− `)s) ≤ hς(`)F (r) + hς(1− `)F (s) + dς(r, s) (12)

is called to be generalized approximately h-convex function on fractal sets.

Remark 2.1.
If hς(`) = `ς , the generalized approximately h-convex function turned into generalized approximately convex
function. If hς(`) = `ς(1− `)ς , hς(`) = 1, hς(`) = `sς , the generalized approximately h- convex function turned
into generalized approximately tgs-convex function, generalized approximately P -convex function, generalized
approximately s-convex function respectively.
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Theorem 2.1.
Let F : [r, s] → Rς and F () ∈ Iς [r, s] be an approximately h-convex on [r, s] , with 0 ≤ r < s. Then following
generalized local fractional integrals inequalities hold:

1

2ςhς( 1
2
)
F
(r + s

2

)
−B1 ≤

1

2ςΛς(1)
[r+I

ς
ϕF (s) + s−I

ς
ϕF (r)]

≤ [F (r) + F (s)]

2ςΛς(1)

1

Γ(1 + ς)

∫ 1

0

ϕς((s− r)`)ς

`ς
[hς(`) + hς(1− `)](d`)ς + dς(r, s)

where,

B1 :=
1

2Λς(1)hς( 1
2
)Γ(1 + ς)

∫ s

r

ϕς(s−)ς

(s−)ς
dς(, r + s−)(d)ς .

Proof. As F is generalized approximately h-convex function, so we have following inequality

F
(u+ v

2

)
≤ hς(1

2
)[F (u) + F (v)] + dς(u, v) (13)

Taking u = `r + (1− `)s and v = `s+ (1− `)r

1

hς( 1
2
)
F
(r + s

2

)
≤ F (`r + (1− `)s)

+F (`s+ (1− `)r) +
1

hς( 1
2
)
d(`r + (1− `)s, `s+ (1− `)r)

Multiply both sides of above inequality by ϕ((s−r)`)
`

and integrate local fractionally with respect to ` over [0, 1],

we have

1

hς( 1
2
)
F
(r + s

2

) 1

Γ(1 + ς)

∫ 1

0

ϕ((s− r)`)
`

(d`)ς

≤ 1

Γ(1 + ς)

∫ 1

0

ϕ((s− r)`)
`

F (`r + (1− `)s)(d`)ς +

1

Γ(1 + ς)

∫ 1

0

ϕ((s− r)`)
`

F (`s+ (1− `)v)(d`)ς

+
1

hς( 1
2
)Γ(1 + ς)

∫ 1

0

ϕ((s− r)`)
`

d(`r + (1− `)s, `s+ (1− `)r)(d`)ς

As a consequence, we get

1

2ςhς( 1
2
)
F
(r + s

2

)
≤ 1

2ςΛς(1)
[r+I

ς
ϕF (s) + s−I

ς
ϕF (r)]

+
1

2ςΛς(1)hς( 1
2
)Γ(1 + ς)

∫ s

r

ϕς(s−)ς

(s−)ς
dς(, r + s−)(d)ς .

we get the proof of right hand side of the inequality.

To prove left hand side of the inequality, since F is approximately h-convex, we have

F (`r + (1− `)s) + F (`s+ (1− `)v) ≤ [F (r) + F (s)][hς(`) + hς(1− `)] + 2ςdς(r, s)

6
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Multiply both sides of inequality by ϕ((s−r)`)
`

and integrating local fractionally with respect to ` over [0, 1], we

have,

1

Γ(1 + ς)

∫ 1

0

ϕ((s− r)`)
`

F (`u+ (1− `)v)(d`)ς +

1

Γ(1 + ς)

∫ 1

0

ϕ((s− r)`)
`

F (`v + (1− `)u)(d`)ς + 2ςdς(r, s)
1

Γ(1 + ς)

∫ 1

0

ϕ((s− r)`)
`

(d`)ς

≤ [F (r) + F (s)]
1

Γ(1 + ς)

∫ 1

0

ϕ((s− r)`)
`

[hς(`) + hς(1− `)](d`)ς + 2ςdς(r, s)Λς(1)

As a result, we get

1

2ςΛς(1)
[r+I

ς
ϕF (s) + s−I

ς
ϕF (r)]

≤ [F (r) + F (s)]

2ςΛς(1)Γ(1 + ς)

∫ 1

0

ϕ((s− r)`)
`

[hς(`) + hς(1− `)](d`)ς + dς(r, s)

Corollary 2.1.
If ϕ(`) = `ς then following inequality holds

1

2ςhς( 1
2
)
F
(r + s

2

)
−B1 ≤

1

2ς(s− r)ς [r+I
ςF (s) + s−I

ςF (r)]

≤ [F (r) + F (s)]

2ς
1

Γ(1 + ς)

∫ 1

0

[hς(`) + hς(1− `)](d`)ς +
dς(r, s)

(s− r)ς

where,

B1 :=
1

2ςhς( 1
2
)Γ(1 + ς)(s− r)ς

∫ s

r

dς(, r + s−)(d)ς .

Corollary 2.2.
If h(`) = `ς in above inequality then following inequality holds

1

2ςhς( 1
2
)
F
(r + s

2

)
−B1 ≤

1

2ς(s− r)ς [r+I
ςF (s) + s−I

ςF (r)]

≤ [F (r) + F (s)]
Γ(1 + ς)

Γ(1 + 2ς)
+
dς(r, s)

(s− r)ς

Corollary 2.3.
If h(`) = `ς(1− `)ς in above inequality then following inequality holds

1

2ςhς( 1
2
)
F
(r + s

2

)
−B1 ≤

1

2ς(s− r)ς [r+I
ςF (s) + s−I

ςF (r)]

≤ [F (r) + F (s)]βς(2, 2) +
dς(r, s)

(s− r)ς

Corollary 2.4.
If h(`) = 1ς in above inequality then following inequality holds

1

2ςhς( 1
2
)
F
(r + s

2

)
−B1 ≤

1

2ς(s− r)ς [r+I
ςF (s) + s−I

ςF (r)]

≤ [F (r) + F (s)]

Γ(1 + ς)
+
dς(r, s)

(s− r)ς

7
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Corollary 2.5.
If h(`) = `sς in above inequality then following inequality holds

1

2ςhς( 1
2
)
F
(r + s

2

)
−B1 ≤

1

2ς(s− r)ς [r+I
ςF (s) + s−I

ςF (r)]

≤ [F (r) + F (s)]
Γ(1 + sς)

Γ(1 + (1 + s)ς)
+
dς(r, s)

(s− r)ς

Theorem 2.2.
Let F : [r, s] → Rς and F () ∈ Iς [r, s] be an approximately h-convex on [r, s] , with 0 ≤ r < s. Then following
generalized local fractional integrals inequalities hold:

1

2ςhς( 1
2
)
F
(r + s

2

)
−B2 ≤

1

2ςΛς(1)
[r+I

ς
ϕF (s) + s−I

ς
ϕF (r)]

≤ [F (r) + F (s)]

2ςΛς(1)

1

Γ(1 + ς)

∫ 1

0

ϕς((s− r)`)ς

`ς
[hς(

`

2
) + hς(

2− `
2

)](d`)ς + dς(r, s)

where,

B2 :=
1

2ςΛς(1)hς( 1
2
)Γ(1 + ς)

∫ s

r+s
2

ϕς(s−)ς

(s−)ς
dς(, r + s−)(d)ς .

Proof. As F is generalized approximately h-convex function, so we have following inequality

F
(u+ v

2

)
≤ hς(1

2
)[F (u) + F (v)] + dς(u, v) (14)

Taking u = `
2
r + (2−`)

2
s and v = `

2
s+ (2−`)

2
r

1

hς( 1
2
)
F
(r + s

2

)
≤ F

(
`

2
r +

(2− `)
2

s

)
+F

(
`

2
s+

(2− `)
2

r

)
+

1

hς( 1
2
)
d

(
`

2
r +

(2− `)
2

s,
`

2
s+

(2− `)
2

r

)

Multiply both sides of the inequality by ϕ((s−r)`)
`

and integrating local fractionally with respect to ` over [0, 1],

we obtain

1

hς( 1
2
)
F
(r + s

2

) 1

Γ(1 + ς)

∫ 1

0

ϕ((s− r)`)
`

(d`)ς

≤ 1

Γ(1 + ς)

∫ 1

0

ϕ((s− r)`)
`

F

(
`

2
r +

(2− `)
2

s

)
(d`)ς +

1

Γ(1 + ς)

∫ 1

0

ϕ((s− r)`)
`

F

(
`

2
s+

(2− `)
2

r

)
(d`)ς

+
1

hς( 1
2
)Γ(1 + ς)

∫ 1

0

ϕ((s− r)`)
`

d

(
`

2
r +

(2− `)
2

s,
`

2
s+

(2− `)
2

r)

)
(d`)ς

As a consequence, we get

1

2ςhς( 1
2
)
F
(r + s

2

)
≤ 1

2ςΛς(1)
[
( r+s

2
)+
IςϕF (s) +

( r+s
2

)−I
ς
ϕF (r)]

+
1

2ςΛς(1)hς( 1
2
)Γ(1 + ς)

∫ s

( r+s
2

)

ϕς(s−)ς

(s−)ς
dς(, r + s−)(d)ς .

8
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we proved the right hand side of the inequality.

To prove left hand side of the inequality, since F is approximately h-convex, we have

F

(
`

2
r +

(2− `)
2

s

)
+ F

(
`

2
s+

(2− `)
2

r

)
≤ [F (r) + F (s)]

[
hς
(
`

2

)
+ hς

(
2− `

2

)]
+ 2ςdς(r, s)

Multiplying both sides of inequality by ϕ((s−r)`)
`

and integrating local fractionally with respect to ` over [0, 1], we

obtain

1

Γ(1 + ς)

∫ 1

0

ϕ((s− r)`)
`

F

(
`

2
r +

(2− `)
2

s

)
(d`)ς

+
1

Γ(1 + ς)

∫ 1

0

ϕ((s− r)`)
`

F

(
`

2
s+

(2− `)
2

r

)
(d`)ς + 2ςdς(r, s)

1

Γ(1 + ς)

∫ 1

0

ϕ((s− r)`)
`

(d`)ς

≤ [F (r) + F (s)]
1

Γ(1 + ς)

∫ 1

0

ϕ((s− r)`)
`

[
hς
(
`

2

)
+ hς

(
2− `

2

)]
(d`)ς + 2ςdς(r, s)Λς(1)

As a result, we get

1

2ςΛς(1)
[
( r+s

2
)+
IςϕF (s) +

( r+s
2

)−I
ς
ϕF (r)]

≤ [F (r) + F (s)]

2ςΛς(1)Γ(1 + ς)

∫ 1

0

ϕ((s− r)`)
`

[
hς
(
`

2

)
+ hς

(
2− `

2

)]
(d`)ς + dς(r, s)

Corollary 2.6.
If ϕ(`) = `ς then following inequality holds

1

2ςhς( 1
2
)
F
(r + s

2

)
−B2 ≤

1

2ς(s− r)ς [
( r+s

2
)+
IςF (s) +

( r+s
2

)−I
ςF (r)]

≤ [F (r) + F (s)]

2ς
1

Γ(1 + ς)

∫ 1

0

[
hς
(
`

2

)
+ hς

(
2− `

2

)]
(dt)ς +

dς(r, s)

(s− r)ς

where,

B2 :=
1

2ςhς( 1
2
)Γ(1 + ς)(s− r)ς

∫ s

( r+s
2

)

dς(, r + s−)(d)ς .

Corollary 2.7.
If h(`) = `ς in above inequality then following inequality holds

1

2ςhς( 1
2
)
F
(r + s

2

)
−B2 ≤

1

2ς(s− r)ς [
( r+s

2
)+
IςF (s) +

( r+s
2

)−I
ςF (r)]

≤ [F (r) + F (s)]

Γ(1 + ς)
+
dς(r, s)

(s− r)ς

Corollary 2.8.
If h(`) = `ς(1− `)ς in above inequality then following inequality holds

1

2ςhς( 1
2
)
F
(r + s

2

)
−B2 ≤

1

2ς(s− r)ς [
( r+s

2
)+
IςF (s) +

( r+s
2

)−I
ςF (r)]

≤ [F (r) + F (s)]

[
βς(2, 2)

2ς
+

Γ(1 + ς)

4ςΓ(1 + ς)
− Γ(1 + 2ς)

8ςΓ(1 + 3ς)

]
+
dς(r, s)

(s− r)ς
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Corollary 2.9.
If h(`) = 1ς in above inequality then following inequality holds

1

2ςhς( 1
2
)
F
(r + s

2

)
−B2 ≤

1

2ς(s− r)ς [
( r+s

2
)+
IςF (s) +

( r+s
2

)−I
ςF (r)]

≤ [F (r) + F (s)]

Γ(1 + ς)
+
dς(r, s)

(s− r)ς

Corollary 2.10.
If h(`) = `sς in above inequality then following inequality holds

1

2ςhς( 1
2
)
F
(r + s

2

)
−B2 ≤

1

2ς(s− r)ς [
( r+s

2
)+
IςF (s) +

( r+s
2

)−I
ςF (r)]

≤ [F (r) + F (s)]

Γ(1 + ς)
+
dς(r, s)

(s− r)ς

3. Conclusion

This study presented the concept of generalized approximately h-convex function on fractal sets. Involving gen-

eralized local fractional integral operators, we proved some latest generalized local fractional integral inequalities.

Some special cases of novel findings are also established. It is to be expected that the the notion introduced in this

study may open new doors for researchers to work on generalized approximately h-convex function in different

directions.
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