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1. Introduction

After the spread of the Corona pandemic, many mathematicians made models to try to analyze the spread of this

epidemic see ([1],[2],[3],...).

Recently modeling several chemical and physical phenomena have broadly been carried out using the theory of

Fractional-order Difference Systems (FoDSs). The definitions of the fractional order deference operators arranged

in order in [9] and later the development of the of som properites was done, while stability was studied in the

commensurate order case in [4] and [5] and the incommensurate case in [6] and [7].

In this work, we will study the discret fractional model of one of the models of Covid 19 and the study of existence

and uniqueness, and then we will present condition to ensure the disappearance of the epidemic. We will focus
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The fractional discrete model of COVID-19: solvability and simulation

here on the following model:



dS
dt

= Λ− (δ + λ)S (t) ,

dE
dt

= λS (t)− ((1− φ)ω + φρ+ δ + ε1)E (t) ,

dI
dt

= (1− φ)ωE (t)− (σ1 + δ + ς1 + τ) I (t) ,

dA
dt

= φρE (t)− (σ2 + δ)A (t) ,

dQ
dt

= ε1E (t)− (δ + η1 + ε2)Q (t) ,

dH
dt

= τI (t) + ε2Q (t)− (δ + η2 + ς2)H (t) ,

dR
dt

= σ1I (t) + σ2A (t) + η1Q (t) + η2H (t)− δR (t) ,

dM
dt

= m1I (t) +m2A (t)−m3M (t) ,

(1)

where λ = ζ1(I+ψA)
N

+ ζ2M, (ζ1, ψ, ζ2 is selected to check λ < 1 during the time period we are interested in). The

previous system is subject to the following nonnegative initial conditions:


S(0) = S0, E(0) = E0, I(0) = I0,

A(0) = A0, Q(0) = Q0, H(0) = H0,

R(0) = R0, M(0) =M0.

.The biological description of the parameters involved in COVID-19 model (1) is given in (2 and 3).

Variable Description

S(t) Susceptible class

E(t) Exposed class

I(t) Infected with clinical symptoms

A(t) Asymptomatically infected

Q(t) Quarantined class

H(t) Hospitalized

R(t) Recovered

M(t) The environmental viral load due to the infected people

(2)
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and

Parameter Description

Λ Recruitment rate

δ Natural death rate

ω Incubation period

ρ Incubation period

σ1 Infected recovery rate

σ2 Asymptomatic recovery rate

η1 Quarantined recovery rate

η2 Recovery rate of the hospitalized

τ Rate of moving from I to H class

ε1 Quarantine rate of exposed individuals

ε2 Hospitalization rate of Q individuals

ς1 Infected disease death rate

ς2 Hospitalized disease death rate

ζ1 Contact rate

ζ2 Disease transmission coefficient

m1 Viral contribution to M by I class

m2 Viral contribution to M by A class

m3 Removalrate of virus from M

ψ Transmissibility multiple

(3)

This model was studied in the fractional order continuous state in [1]. What interests us here is the following

discrete fractional order case of this system.

In any case, this paper is divided as follows, in section 2 we will mention some initial concepts about fractional

order difference calculus which we will need later in our study and then we will define the system that we will

study, section 3 we study existence and uniqueness of the solution and then set a condition that guarantees the

disappearance of the epidemic, section 4 includes numerical simulations that clarify what been studied.

2. Preliminaries

This section briefly introduces some basic definitions and preliminaries associated with discrete fractional calculus.

Within the definitions below, the function f is defined on the set of the form Na = {a, a+ 1, a+ 2, ...}, where

a ∈ R.

25



The fractional discrete model of COVID-19: solvability and simulation

Definition 2.1.
[5] Let α > 0. Then, the αth−fractional sum, ∆−α

a , of a function f : Na → R is defined by:

∆−α
a f(t) :=

1

Γ(α)

t−α∑
s=a

(t− s− 1)(α−1)f(s), for t ∈ Na+α, (4)

where Γ(.) is the Euler’s gamma function.

Definition 2.2.
[5] Let α > 0, α /∈ N. Then, the αth−order Caputo fractional difference of a function f is defined by:

C∆α
af(t) := ∆−(n−α)

a ∆nf(t) =
1

Γ(n− α)

t−(n−α)∑
s=a

(t− s− 1)(n−α−1)∆nf(s), t ∈ Na+n−α, (5)

where n = [α] + 1.

Proposition 2.1.
[5] Let 0 < α ≤ 1, and f is defined on Na. Then

∆−α
a+(1−α)

C∆α
a f(t) = f(t)− f(a), ∀t ∈ Na. (6)

Based on the two previous definitions, the αth−order Caputo fractional difference system associate to the system

(1) is written as follows:



C∆α
0S (t) = Λ− (δ + λ)S (t− 1 + α) ,

C∆α
0E (t) = λS (t− 1 + α)− ((1− φ)ω + φρ+ δ + ε1)E (t− 1 + α) ,

C∆α
0 I (t) = (1− φ)ωE (t− 1 + α)− (σ1 + δ + ς1 + τ) I (t− 1 + α) ,

C∆α
0A (t) = φρE (t− 1 + α)− (σ2 + δ)A (t− 1 + α) ,

C∆α
0Q (t) = ε1E (t− 1 + α)− (δ + η1 + ε2)Q (t− 1 + α) ,

C∆α
0H (t) = τI (t− 1 + α) + ε2Q (t− 1 + α)− (δ + η2 + ς2)H (t− 1 + α) ,

C∆α
0R (t) = σ1I (t− 1 + α) + σ2A (t− 1 + α) + η1Q (t− 1 + α) + η2H (t− 1 + α)− δR (t− 1 + α) ,

C∆α
0M (t) = m1I (t− 1 + α) +m2A (t− 1 + α)−m3M (t− 1 + α) ,

(7)

where 0 < α < 1 and t ∈ N1−α.

Theorem 2.1.
[9] If there exists a positive definite and decrescent scalar function V (t, x) such that

C∆α
t0V (t, x(t)) ≤ 0, (8)

for all t0 ∈ Na, then the trivial solution of (6) is uniformly stable.
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3. Existence and uniqueness

Now, to show the existence and uniqueness we use fixed point theory and Picard Lindelöf method. To proceed,

we may rewrite the system described in (7) in the following classical form:


C∆α

0X (t) = F ((t− 1 + α) , X (t− 1 + α)),

X(0) = X0,
(9)

where t ∈ NTmax
1−α ,((Tmax − 1 + α) ∈ N) the vector X(t) = (S(t), E(t), I(t), A(t), Q(t), H(t), R(t),M(t))T and the

function F (t,X(t)) is defined as follows:

F1(t, S) = Λ− (δ + λ)S (t) ,

F2(t, E) = λS (t)− ((1− φ)ω + φρ+ δ + ε1)E (t) ,

F3(t, I) = (1− φ)ωE (t)− (σ1 + δ + ς1 + τ) I (t) ,

F4(t, A) = φρE (t)− (σ2 + δ)A (t) ,

F5(t, Q) = ε1E (t)− (δ + η1 + ε2)Q (t) ,

F6(t,H) = τI (t) + ε2Q (t)− (δ + η2 + ς2)H (t) ,

F7(t, R) = σ1I (t) + σ2A (t) + η1Q (t) + η2H (t)− δR (t) ,

F8(t,M) = m1I (t) +m2A (t)−m3M (t) ,

(10)

To do so we proceed in the following manner. Using initial conditions (X(0)) and Proposition 3, we transform

the system (7) into the following sum equations:



S(t)− S(0) = ∆−α
1−α (Λ− (δ + λ)S (t− 1 + α)) ,

E(t)− E(0) = ∆−α
1−α (λS (t− 1 + α)− ((1− φ)ω + φρ+ δ + ε1)E (t− 1 + α)) ,

I(t)− I(0) = ∆−α
1−α ((1− φ)ωE (t− 1 + α)− (σ1 + δ + ς1 + τ) I (t− 1 + α)) ,

A(t)−A(0) = ∆−α
1−α (φρE (t− 1 + α)− (σ2 + δ)A (t− 1 + α)) ,

Q(t)−Q(0) = ∆−α
1−α (ε1E (t− 1 + α)− (δ + η1 + ε2)Q (t− 1 + α)) ,

H(t)−H(0) = ∆−α
1−α (τI (t− 1 + α) + ε2Q (t− 1 + α)− (δ + η2 + ς2)H (t− 1 + α)) ,

R(t)−R(0) =
∆−α

1−α (σ1I (t− 1 + α) + σ2A (t− 1 + α) + η1Q (t− 1 + α) + η2H (t− 1 + α)

−δR (t− 1 + α)) ,

M(t)−M(0) = ∆−α
1−α (m1I (t− 1 + α) +m2A (t− 1 + α)−m3M (t− 1 + α)) ,

(11)
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for t ∈ NTmax
a+1−α. Using (10) and the definition of ∆−α

a in (11), we obtained the state variable in terms of Fi(t,X(t)),

where i = 1···6.



S(t) = S(0) + 1
Γ(α)

t−α∑
s=1−α

(t− s− 1)(α−1)F1(s− 1 + α, S(s− 1 + α)),

E(t) = E(0) + 1
Γ(α)

t−α∑
s=1−α

(t− s− 1)(α−1)F2(s− 1 + α,E(s− 1 + α)),

I(t) = I(0) + 1
Γ(α)

t−α∑
s=1−α

(t− s− 1)(α−1)F3(s− 1 + α, I(s− 1 + α)),

A(t) = A(0) + 1
Γ(α)

t−α∑
s=1−α

(t− s− 1)(α−1)F4(s− 1 + α,A(s− 1 + α)),

Q(t) = Q(0) + 1
Γ(α)

t−α∑
s=1−α

(t− s− 1)(α−1)F5(s− 1 + α,Q(s− 1 + α)),

H(t) = H(0) + 1
Γ(α)

t−α∑
s=1−α

(t− s− 1)(α−1)F6(s− 1 + α,H(s− 1 + α)),

R(t) = R(0) + 1
Γ(α)

t−α∑
s=1−α

(t− s− 1)(α−1)F7(s− 1 + α,R(s− 1 + α)).

M(t) = M(0) + 1
Γ(α)

t−α∑
s=1−α

(t− s− 1)(α−1)F8(s− 1 + α,M(s− 1 + α)).

t ∈ NTmax
1−α . (12)

The Picard iterations are given by the following equations:



Sn(t) = S(0) + 1
Γ(α)

t−α∑
s=1−α

(t− s− 1)(α−1)F1(s− 1 + α, Sn(s− 1 + α)),

En(t) = E(0) + 1
Γ(α)

t−α∑
s=1−α

(t− s− 1)(α−1)F2(s− 1 + α,En(s− 1 + α)),

In(t) = I(0) + 1
Γ(α)

t−α∑
s=1−α

(t− s− 1)(α−1)F3(s− 1 + α, In(s− 1 + α)),

An(t) = A(0) + 1
Γ(α)

t−α∑
s=1−α

(t− s− 1)(α−1)F4(s− 1 + α,An(s− 1 + α)),

Qn(t) = Q(0) + 1
Γ(α)

t−α∑
s=1−α

(t− s− 1)(α−1)F5(s− 1 + α,Qn(s− 1 + α)),

Hn(t) = H(0) + 1
Γ(α)

t−α∑
s=1−α

(t− s− 1)(α−1)F6(s− 1 + α,Hn(s− 1 + α)),

Rn(t) = R(0) + 1
Γ(α)

t−α∑
s=1−α

(t− s− 1)(α−1)F7(s− 1 + α,Rn(s− 1 + α)).

Mn(t) = M(0) + 1
Γ(α)

t−α∑
s=1−α

(t− s− 1)(α−1)F8(s− 1 + α,Mn(s− 1 + α)).

t ∈ NTmax
1−α . (13)

Corresponding to the form (12), and with the initial condition we have the following sum equation:

X(t) = X(0) +
1

Γ(α)

t−α∑
s=1−α

(t− s− 1)(α−1)F (s− 1 + α,X(s− 1 + α)). t ∈ N1−α. (14)

Lemma 3.1.
The function F (t,X(t)) defined in (10) satisfies the Lipschitz condition given by

∥F (t,X(t)− F (t,X(t))∥ ≤ β ∥(X(t)−X(t))∥ , (15)

where

β = max

{
∥(δ + λ)∥ , ∥((1− φ)ω + φρ+ δ + ε1)∥ , ∥(σ1 + δ + ς1 + τ)∥
∥(σ2 + δ)∥ , ∥(δ + η1 + ε2)∥ , ∥(δ + η2 + ς2)∥ , ∥δ∥ , ∥m3∥

}
. (16)
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Proof. Summarizing that S(t) and S∗(t) are couple functions, we reach

∥F1(t, S)− F1(t, S
∗)∥ = ∥(δ + λ) (S(t)− S∗(t))∥ . (17)

Taking into account

β1 = ∥(δ + λ)∥ , (18)

one reaches

∥F1(t, S)− F1(t, S)∥ ≤ β1 ∥(S − S∗)∥ . (19)

Continuing in the same way, one gets

∥F2(t, E)− F2(t, E
∗)∥ ≤ β2 ∥(E − E∗)∥ ,

∥F3(t, I)− F3(t, I
∗)∥ ≤ β3 ∥(I − I∗)∥ ,

∥F4(t, A)− F4(t, A
∗)∥ ≤ β4 ∥(A−A∗)∥ ,

∥F5(t, Q)− F5(t, Q
∗)∥ ≤ β4 ∥(Q−Q∗)∥ ,

∥F6(t,H)− F6(t,H
∗)∥ ≤ β6 ∥(H −H∗)∥ ,

∥F7(t, R)− F7(t, R
∗)∥ ≤ β7 ∥(R−R∗)∥ ,

∥F8(t,M)− F8(t,M
∗)∥ ≤ β8 ∥(M −M∗)∥ ,

(20)

where

β2 = ∥((1− φ)ω + φρ+ δ + ε1)∥ ,

β3 = ∥(σ1 + δ + ς1 + τ)∥ ,

β4 = ∥(σ2 + δ)∥ ,

β5 = ∥(δ + η1 + ε2)∥ ,

β6 = ∥(δ + η2 + ς2)∥ ,

β7 = ∥δ∥ ,

β8 = ∥m3∥ .

(21)

From (19-20), we find that the kernels Fi, 1 ≤ i ≤ 8 is satisfying the Lipschitz condition, moreover if βi < 1, for

1 ≤ i ≤ 8 then the kernel Fi is contraction.

Theorem 3.1.
Assuming we have (16), then there exist a unique solution to the system (7) if

β
∣∣∣(Tmax − a)(α) − (1− α)(α)

∣∣∣ < 1. (22)

Proof. The solution to the system (9) is

X(t) = P (X(t)), (23)

29



The fractional discrete model of COVID-19: solvability and simulation

where, P is the Picard operator defined by

P (X(t)) = X(0) +
1

Γ(α)

t−α∑
s=1−α

(t− s− 1)(α−1)F (s− 1 + α,X(s− 1 + α)). (24)

Further, we have

∥P (X1(t)− P (X2(t))∥ =

∥∥∥∥ 1
Γ(α)

t−α∑
s=1−α

(t− s− 1)(α−1)(F (s− 1 + α,X1(s− 1 + α))

−F (s− 1 + α,X2(s− 1 + α)))∥ ,

≤
1

Γ(α)

t−α∑
s=1−α

(t− s− 1)(α−1) ∥(F (s− 1 + α,X1(s− 1 + α))

−F (s− 1 + α,X2(s− 1 + α)))∥ ,

≤
1

Γ(α)

(
t−α∑

s=1−α
(t− s− 1)(α−1)

)
max
s∈Nt−α

0

∥(F (s− 1 + α,X1(s− 1 + α))

−F (s− 1 + α,X2(s− 1 + α)))∥ ,

≤ (Tmax)
(α)−(1−α)(α)

Γ(α)
β ∥(X1(t)−X2(t))∥ .

(25)

Since, (Tmax)
(α)−(1−α)(α)

Γ(α)
β < 1, (t ≤ Tmax) then, the operator P is a contraction, hence the system (9) has a

unique solution in ℓ∞.

To evaluate the equilibrium let:

C∆α
0S (t+ 1− α) =C ∆α

0E (t+ 1− α) =C ∆α
0 I (t+ 1− α) =C ∆α

0A (t+ 1− α) =C ∆α
0Q (t+ 1− α) =C

∆α
0H (t+ 1− α) =C ∆α

0R (t+ 1− α) =C ∆α
0M (t+ 1− α) = 0. System (7) become:



Λ− (δ + λ)S (t) = 0,

λS (t)− ((1− φ)ω + φρ+ δ + ε1)E (t) = 0,

(1− φ)ωE (t)− (σ1 + δ + ς1 + τ) I (t) = 0,

φρE (t)− (σ2 + δ)A (t) = 0,

ε1E (t)− (δ + η1 + ε2)Q (t) = 0,

τI (t) + ε2Q (t)− (δ + η2 + ς2)H (t) = 0,

σ1I (t) + σ2A (t) + η1Q (t) + η2H (t)− δR (t) = 0,

m1I (t) +m2A (t)−m3M (t) = 0,

(26)

For which we get the DFE as follows:

(S0, 0, 0, 0, 0, 0, 0, 0) = (
Λ

δ
, 0, 0, 0, 0, 0, 0, 0). (27)

The basic reproduction number R0 is given by ([1]):

R0 =
k1δm3ζ1φρψ + k2δm3ζ1ω − k2ζ2φωΛm1

k0k1k2m3δ
+
k1ζ2ρφΛm2 + k2ζ2ωΛm1 − k2δζ1φωm3

k0k1k2m3δ
. (28)
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where

k0 = (1− φ)ω + φρ+ δ + ε1,

k1 = σ1 + δ + ς1 + τ,

k2 = σ2 + δ,

k3 = δ + η1 + ε2,

k4 = δ + η2 + ς2.

(29)

Theorem 3.2.
If

R0 < 1, (30)

then the COVID-19 free equilibrium (S0, 0, 0, 0, 0) is globally asymptotically stable.

Proof. Lyapunov function is commonly used to prove the global stability of the Disease Free Equilibrium of [7].

Taking in consideration the formed Lyapunov function of the type:

L(t) = θ1E + θ2I + θ3A+ θ4M. (31)

According to [1], if

θ1 = m3δ, θ2 = m3δζ1+Λm1ζ2
k1

, θ3 = m3ψδζ1 + Λm2ζ2k2, θ1 = Λζ2. (32)

then

C∆α
0L(t) ≤ k0m3δ (R0 − 1)E, (33)

Then L(t) negative defined if R0 < 1. According to Theorem 3 the pandemic will disappear.

4. Numerical simulation

In this section we will perform numerical simulations to verify the results mentioned in the previous section. We

take a population (N(0)) of 7315, divided as follows:


S(0) = 4000, E(0) = 3000, I(0) = 40,

A(0) = 10, Q(0) = 18, H(0) = 7,

R(0) = 100, M(0) = 140.

And let:
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Λ = 0.0038; η1 = 0.0006715; ς2 = 0.0006715; ψ = 0.0005856;

δ = 0.000612; η2 = 0.0006052; ζ1 = 0.15; φ = 0.4.

ω = 0.00129; τ = 0.00003061; ζ2 = 0.00144;

ρ = 0.00001305; ε1 = 0.00024; m1 = 0.000216;

σ1 = 0.0005253; ε2 = 0.00003; m2 = 0.000228;

σ2 = 0.000386; ς1 = 0.000222; m3 = 0.0002276;

(34)

The following is a numerical simulation of the total number of infection in several alpha cases and by changing

some parameters:

0 10 20 30 40 50 60 70 80
0

500

1000

1500

2000

2500

3000

time

I+
A

+
H

alpha=0.2
alpha=0.5
alpha=0.8

Figure 1. A numerical simulation of the previous example.

It can be seen that the fractional order does not change the behavior of the epidemic, but it gives us more

flexibility to describe the spread of the disease.

5. CONCLUSIONS

In this papere, a discrete fractional order Covid-19 model is studied and some results of existence and global

stability are given by using an appropriate Lyapunov function to ensure the disappearance of the disease in

comfortable conditions.
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Figure 2. A numerical simulation of the previous example by placing =0.129.
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[9] Fahd. J, Thabet A, Dumitru. B, Kübra. B., On the Stability of Some Discrete Fractional Nonautonomous

Systems. Hindawi Publishing Corporation. 2012.

33


	Introduction
	Preliminaries
	Existence and uniqueness
	Numerical simulation
	CONCLUSIONS
	References

