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Abstract: This paper develops a theoretical framework for analyzing the stability of nonlinear incommensurate fractional-

order neural networks. A necessary theorem for asymptotical stability is established using the characteristic

equation for a nonlinear fractional-order system, and how to employ this theorem in stabilization is also
presented. With the suitable control, the difficulties of stabilization and synchronization of fractional-order

chaotic incommensurate fractional-order neural networks may be readily overcome. Two numerical examples

have been shown to demonstrate how the established theory may be used to investigate stability and construct
stabilization controllers.
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1. Introduction

The study of differential and integral operators of real and complex order referred to as fractional calculus was

developped by many famous mathematicians such as Liouville, Riemann, Abel, and CaputoEven though the

branch of fractional calculus began practically concurrently with its integer-order equivalent, the mathematics

and, in particular, its applications are somewhat less developed, and several causes have led to this conclusion.

The fact that these operators are multiscale by nature is noteworthy, as a consequence, memory effects are

enabled by time-fractional operators.In the last few decades, fractional calculus has developed fast and has many

applications in a wide range of areas [13][8][2][18][1]. It has been revealed that fractional differential equations

are strongly connected to systems having memory and hereditary features [20][21][11],Furthermore, it offers an

∗ E-mail: amel.hioual@univ-oeb.dz
† E-mail: taki maths@live.fr

110

mailto: amel.hioual@univ-oeb.dz 
mailto: taki_maths@live.fr 


A. Hioual, T-E. Oussaeif

efficient description approach for mathematical models, as an example secure communication [2], control fields

[23], digital signal processor [17] and so on.

In recent years, neural networks have received a great deal of attention due to their effective applications in

a wide range of fields, including optimization, function approximation, associative memory, signal processing,

automated control, and etc [7][24][22]. These applications rely significantly on the stability qualities of neural

networks. As a result, the stability analysis of neural networks has received much interest in the research. To its

memory and heredity features, for that fractional-order neural networks are projected to be particularly useful in

many applications [6]. It is also shown that fractional-order neural networks may be successfully employed in a

variety of study domains [14][4].Strong requirements have been offered for commensurate fractional order neural

networks (including derivation orders that are all multiples of the same order), in [27] Global asymptotic stability

of fractional-order competitive neural networks with multiple time-varying-delay links was investigated, Mittag-

Leffler stability and adaptive impulsive synchronization of fractional order neural networks in quaternion field was

adressed in [3], and in [9], New criteria on finite-time stability of fractional-order hopfield neural networks with

time delays was introduced, [15] treated α-stability and α-synchronization for fractional-order neural networks.

On the other hand, the synchronization problem initially introduced in [19], is a basic phenomenon that has

recently received a lot of attention, since it has both theoretical and practical implications. One of the key

issues is to accomplish and explain synchronization of chaotic systems that are strictly distinct. As it has

been demonstrated that certain neural networks can manifest chaotic behavior, different synchronization results

and approaches regarding constant fractoinal order neural networks have been published in the previous decade

[12][25][10][28][29][30]. Because of the complicated dynamics of incommensurate systems, these conclusions and

approaches could not be simply extended and applied to the incommensurate case.

All of the articles mentioned above studied the commensurate fractional-order neural networks, which indicates

that the conclusions achieved may be invalid for incommensurate fractional-order neural networks(this includes

all derivation orders that are multiples of different order). Because commensurate fractional-order neural net-

works are a subtype of incommensurate fractional-order neural networks, it is crucial to explore the stability

and synchronization of incommensurate fractional-order neural networks. However, relatively few related results

concerning these systems have been reported so far. Motivated by the earlier discussion, in this work we address

the stability and synchronization of incommensurate fractional-order neural networks.

This paper’s reminder is arranged as follows. Section 2 contains some preliminaries, such as definitions, lemma and

theorems to Caputo fractional-order calculation. In Section 3.1, numerous necessary conditions for determining

the stability criteria of incommensurate fractional-order neural networks are developed. Some essential conditions

for synchronization of incommensurate fractional-order neural networks are derived in Section 3.2. Section 4

provides two numerical simalations to demonstrate the efficacy of the stated results. Fanilly, Section 5 provides

the conclusion to this study.
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2. Preliminaries

Definition 2.1 ([8]).
The fractional-order integral of order α for an integrable function f : [t0,+∞) → R is defined as

t0I
α
t f(t) =

1

Γ(α)

∫ t

t0

(t− τ)α−1f(τ)dτ,

where α > 0, and Γ(.) is the Gamma function which is defined by

Γ(z) =

∫ ∞

0

e−ttz−1dt, (Re(z) > 0

where Re(z) is the real part of z.

Definition 2.2 ([8]).
The caputo fractional-order derivative of order α for a function f is defined as

C
t0D

α
t f(t) =

1

Γ(n− α)

∫ t

t0

(t− τ)n−α−1f (n)(τ)dτ,

where t ≥ t0 and n is a positive integer such that n− 1 < α < n.
particuly, when 0 < α < 1

C
t0D

α
t f(t) =

1

Γ(1− α)

∫ t

t0

(t− τ)−αf ′(τ)dτ,

Proposition 2.1 ([8]). • C
t0D

α
t c = 0 holds, where c is any constant.

• The linearity of the Caputo fractional order derivative:

C
t0D

α
t (v1f(t) + v2g(t) = v1

C
t0D

α
t f(t) + v2

C
t0D

α
t g(t)

Lemma 2.1 ([8]).
Let n = [α] + 1 for α or n = α for α ∈ N+, if x(t) ∈ Cn[a, b] then,

RL
t0 Iαt

C
t0D

α
t x(t) = x(t)−

n−1∑
k=0

x(k)(a)

k!
(t− t0)

k, n− 1 < α ≤ n.

In particular if 0 < α ≤ 1 and x(t) ∈ C1[a, b], then

RL
t0 Iαt

C
t0D

α
t x(t) = x(t)− x(t0)

Theorem 2.1 ([26]).
Consider the following n-dimensional linear fractional order system:

C
0 D

α
t x(t) = Ax(t) (1)

where α = (α1, ..., αn), A = (aij)n∗n Assume M be the lowest common multiple of the denominators ui’s of αi’s,

where αi =
vi
ui

, (ui, vi) = 1, ui, vi ∈ Z+, for i = 1, 2, ..., n.

Then the zero solution of system (1) is globally asymptotically stable in the Lyapunov sense if all roots λi’s of

det
{
diag

([
λMα1 λMα2 ... λMαn

])
−A

}
= 0

satisfy |arg(λ)| > π

2M
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Theorem 2.2 ([5]).
Consider the following n-dimensional linear fractional order system:

C
0 D

α
t x(t) = f(x(t)) (2)

where α = (α1, ..., αn), f(x(t)) = (f1(x(t)), ..., fn(x(t)) is a nonlinear continious function Assume M be the lowest

common multiple of the denominators ui’s of αi’s, where αi =
vi
ui

, (ui, vi) = 1, ui, vi ∈ Z+, for i = 1, 2, ..., n.

Then the zero solution of system (2) is globally asymptotically stable in the Lyapunov sense if all roots λi’s of

det
{
diag

([
λMα1 λMα2 ... λMαn

])
− J

}
= 0

satisfy |arg(λ)| > π

2M
where J = ∂f

∂x
|x=x∗ is the jaconienne matrix of f

3. Mains results

The icommensurate fractional-order neural networks can be discrbed as follow

C
t0D

α1
t x1(t) = −c1x1(t) +

∑n
j=1 b1jgj(xj(t)) + I1

C
t0D

α2
t x2(t) = −c2x2(t) +

∑n
j=1 b2jgj(xj(t)) + I2

...

C
t0D

αn
t xn(t) = −cnxn(t) +

∑n
j=1 b1jgj(xj(t)) + In

x(t0) = x0

(3)

or it can be written as 
C
t0D

α
t x(t) = −Cx(t) +Bg(x(t)) + I

x(t0) = x0

where C
t0D

αi
t , denotes the Caputo fractional derivative with order α = (α1, ..., αn), (0 < αi < 1) and n represents

the number of units in a neural network. x(t) = (x1(t), x2(t), ..., xn(t))
t ∈ R is the state vector at time t. (ci) ∈

Rn∗n, i ∈ {1, 2, ..., n} with ci > 0 is a diagonal matrix referred to the self-feedback connection weight, (bij ∈ Rn∗n

corresponds to the connection of ith neuron to the jth neuron at time t. g : C([t0, T ],Rn) → Rn, g(t, x(t)) =

(g1(t, x(t)), g2(t, x(t, x(t)), ..., gn(t, x(t)))
T is the neuron continous activation function and I = (I1, I2, ..., In)

T is

the external inputs vector.

3.1. Stability of incommensurate fractional-order neural netwroks

Theorem 3.1.
Suppose that M is the lowest common multiple of the denominators ui’s of αi’s, where αi =

vi
ui

, (ui, vi) =

1, ui, vi ∈ Z+, for i = 1, 2, ..., n. the equilibrium point x = x∗ of system (3) is asymptotically stable if

|arg(λ)| > π

2M
,
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for all roots λ’s of the following equation

det
{
diag

([
λMα1 λMα2 ... λMαn

])
− (−C +BJ)

}
= 0

where

J =
∂g

∂x
|x=x∗ , g = [g1, g2, ..., gn]

T

Proof. Solving the following equations yields the equilibrium points of system (3):

− cixi(t) +

n∑
j=1

bijgj(t, xj(t)) + Ii = 0, i = 1, 2, ..., n (4)

Suppose that x∗ = (x∗
1, x

∗
2, ..., x

∗
n) is an equilibrium point of system (3),

i.e.

− cix
∗
i +

n∑
j=1

bijgj(t, x
∗
j ) + Ii = 0; i = 1, 2, ..., n (5)

To analyze this point’s asymptotic stability, we establish

κi = xi − x∗
i , i = 1, 2, ..., n

then we have

t0
CDα

t (κi(t) + x∗
i ) = −ci(κi(t) + x∗

i ) +

n∑
j=1

bijgj(t, (κj((t) + x∗
j )) + Ii = 0, i = 1, 2, ..., n (6)

which implies according to Lemma(2.1)

C
t0D

αi
t κi(t) = −ci(κi(t) + x∗

i (t)) +

n∑
j=1

bijgj(t, (κj((t) + x∗
j (t))) + Ii = 0, i = 1, 2, ..., n

If function fi has second continuous partial derivatives in a ball Rn centered at point x∗ , then we obtain

gj(κ1(t) + x∗
1, κ2(t) + x∗

2, ..., κn(t) + x∗
n) = gj(x

∗
1, x

∗
2, ..., x

∗
n) +

[
df1
dx1

df2
dx2

...
dfn
dxn

]
κ+ gj(κ))

therefor (6) becomes

C
t0D

αi
t κi(t) = −ci(κi(t) + x∗

i (t)) +

n∑
j=1

bij

{
gj(x

∗
j (t)) +

dfj
dxj

κj(t)

}
+ Ii

which gives using (5)

C
t0D

αi
t κi(t) = −ciκi(t) +

n∑
j=1

bij
dfj
dxj

κj(t)
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and then 

C
t0D

α1
t κ1(t)

C
t0D

α2
t κ2(t)

...

C
t0D

αn
t κn(t)


= (−C +BJ)κ

where

J =
dg

dx
, g = [g1, g2, ..., gn]

T

Suppose that M is the lowest common multiple of the denominators ui’s of αi’s, where αi =
vi
ui

, (ui, vi) =

1, ui, vi ∈ Z+, for i = 1, 2, ..., n. According to Theorem 2.2, the equilibrium point x = x∗ of system (3) is

asymptotically stable if

|arg(λ)| > π

2M
,

for all roots λ’s of the following equation

det

{
diag

([
λMα1 λMα2 ... λMαn

])
− (−C +BJ)

}
= 0

Which completes the proof.

3.2. Synchronization of incommensurate fractional order neural networks

In this section, the synchronization of incommensurate fractional order neural networks is investigated.

As known a required condition for a fractional order system C
0 D

α
t x(t) = f(x(t)) to display the chaotic attractor

is mathematically equal to:

π

2M
−min

i
{|arg(λi)|} ≥ 0,

where λi’s are roots of equations:

det

{
diag

([
λMα1 λMα2 ... λMαn

])
− df

dx

}
= 0

Thus, under the following essential condition, incommensurate fractional-order neural networks (3) exhibit chaotic

behavior if

π

2M
−min

i
{|arg(λi)|} ≥ 0,

where λi’s are roots of equations:

det

{
diag

([
λMα1 λMα2 ... λMαn

])
− (−C +BJ)

}
= 0
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Now, we consider a master system represented in (3) and a slave system given by:

C
0 D

α1
t y1(t) = −c1y1(t) +

∑n
j=1 b1jgj(yj(t)) + I1 + U1(t)

C
0 D

α2
t y2(t) = −c2y2(t) +

∑n
j=1 b2jgj(yj(t)) + I2 + U2(t)

...

C
0 D

αn
t yn(t) = −cnyn(t) +

∑n
j=1 bnjgj(yj(t)) + In + Un(t)

(7)

Definition 3.1 ([25]).
If any solutions x(t) of (3) and z(t) of (7) satisfy the condition

lim
t→+∞

∥x(t)− y(t)∥ = 0

then systems (3) and (7) are said to be global asymptotic synchronization.

Theorem 3.2.
The master–slave pair (3)–(7) is globally complete synchronized by means of the control law:

Ui(t) = −[(−ci + ai)ei(t)− ciei(t) +

n∑
j=1

bij(gj(yj(t))− gj(xj(t)))], i = 1, ..., n

subject to the selection of the control matrix A as follows

A = diag
([
a1 ... an

])
, such that − ai + ci > 0, i =, ..., n

Proof. Let’s consider the following error

ei(t) = yi(t)− xi(t), i = 1, ..., n

The Caputo fractional differential of the error system is given by

C
0 D

αi
t ei(t) =

C
0 D

αi
t yi(t)− C

0 D
αi
t xi(t) = −ciei(t) +

n∑
j=1

bij(gj(yj(t))− gj(xj(t))) + Ui (8)

Synchronization between master system (3) and slave system (7) is equivalent to the asymptotic stability of error

system (8) with the suitable control law U(t).

With the choose of

Ui = −[(−ci + ai)ei(t)− ciei(t) +

n∑
j=1

bij(gj(yj(t))− gj(xj(t)))]

we obtain

C
0 D

αi
t ei(t) = (ci − ai)ei(t)

Since C
0 D

αi
t ei(t) = (ci − ai)ei(t) is a linear system according to Theorem (2.1) this system is stable iff

det

{
diag

([
λMα1 λMα2 ... λMαn

])
− (C −A)

}
= 0

therefor −ci + ai > 0, i = 1, ..., n

which accomplishes the proof.
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4. Numerical examples

All simulations in this section were run using Adams–Bashforth–Moulton algorithm described in [16] to solve a

Caputo definition-based fractional differential equation.

Example 1 We consider the incommensurate fractional-order neural networks


C
0 D

α1
t x1(t) = −c1x1(t) + b11 tanh(x1(t)) + b12 tanh(x2(t)) + I1

C
0 D

α2
t x2(t) = −c2x2(t) + b21 tanh(

x1(t)

4
) + b22 tanh(

x2(t)

4
) + I2

(9)

where

B =

−0.5 0.3

−0.7 0.1

 ; C = diag

([
0.1 0.2

])
; I = (0 0)T

and (α1, α2) = (0.4, 0.3)

To obtain the equilibrium points, let us consider the equations as


−0.1x1(t)− 0.5 tanh(x1(t)) + 0.3 tanh(x2(t)) = 0

−0.2x2(t)− 0.7 tanh(
x1(t)

4
) + 0.1 tanh(

x2(t)

4
) = 0

(10)

After solving equations (10), we get the equilibrium point as E(0, 0).

The Jacobian matrix for the function g(x(t)) = [tanh(x(t)), tanh(
x(t)

4
)]T is given as

J =


1

cosh2(x1(t))

1

cosh2(x1(t))

1

4 cosh2(x1(t))

1

4 cosh2(x1(t))


at the equilibrium point E(0, 0) the characteristic polynomial of the matrix −C +BJ is given by

∆(λ) = λ7 + 0.65λ40.525λ3 + 0.5325 (11)

The roots λi’s and their appropriate arguments of polynomial of (11) calculated below

λ1,2 = 0.5964 + 0.8154i, |arg(λ1)| = 0.9393

λ3 =− 0.8112 + 0.0000i, |arg(λ3)| = 3.1416

λ4,5 = −0.5589 + 0.4965i, |arg(λ4)| = 2.4153

λ6,7 = 0.3681 + 0.4703i, |arg(λ6)| = 0.9067
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Figure 1. Numerical solution of the incommensurate neorder neural networks (9)

Since

|arg(λi)| >
π

2M
=

π

20
,

The incommensurate neural networks (9) is asymptotically stable.

For time step size 0.01 and initial value x0 = [10,−10]T , numerical simulation results in Figure 1 illustrate

the asymptotically stability of system (9) for the given fractional-orders.

Exemple 2 Let’s consider the three dimensionelle incommensurate fractional-order neural networks



C
0 D

α1
t x1(t) = −c1x1(t) + b11g(x1(t)) + b12g(x2(t)) + b13g(x3(t)) + I1

C
0 D

α2
t x2(t) = −c2x2(t) + b21g(x1(t)) + b22g(x2(t)) + b23g(x3(t)) + I2

C
0 D

α3
t x3(t) = −c3x3(t) + b31g(x1(t)) + b32g(x2(t)) + b33g(x3(t)) + I3

(12)

where

B =


−1 3 2

1 − 4 1

5 1 2

 ; C = diag(0.8 0.8 0.8); I =

[
0.01 0.01 0.01

]

g(x(t)) = sin(x(t)) the initial condition x0 = (0.1, 0.1, 0.1)T and (α1, α2, α3) =

(
1

3
,
2

3
,
1

3

)
The equilibrium

point is x∗(0.0010, 0.0027, 0.0019)T the characteristic polynomial of −C +BJ matrix is given by

∆(λ) = λ4 − 10.4λ3 − 6.16λ2 − 5.12λ− 5.888 (13)
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Figure 2. Chaotic behavor of the incommensurate fractional-order neural networks (12)

then the roots λ, and their appropriate arguments of polynomial (13) are

λ1 = 11.0064 + 0.0000i, |arg(λ1)| = 0

λ2 =− 0.8000 + 0.0000i, |arg(λ3)| = 3.1416

λ3,4 = 0.0968 + 0.8120i, |arg(λ4)| = 1.4521

x∗ is unstable for the given fractional-orders because the eigenvalue λ1 is a positive real integer.

system (12) is considered the master system. Now, Let’s consider the slave system



C
0 D

α1
t y1(t) = −c1y1(t) + b11g(x1(t)) + b12g(y2(t)) + b13g(y3(t)) + I1 + U1

C
0 D

α2
t y2(t) = −c2y2(t) + b21g(y1(t)) + b22g(y2(t)) + b23g(y3(t)) + I2 + U2

C
0 D

α3
t y3(t) = −c3y3(t) + b31g(y1(t)) + b32g(y2(t)) + b33g(y3(t)) + I3 + U3

(14)

Theorem 3.2 states that there exists a control matrix A such that C and A fulfills the condition. One can,

for example, select the form

A = diag

([
1.75 1.6 0.7

])
This obviously meets the condition, as a result, systems (12) and (14) are synchronized. It is now quite
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Figure 3. The evolution of the error system’s states

simple to create the control law using Theorem 3.2. The final error system looks such as this



C
0 D

α1
t e1(t) = −0.95e1(t)

C
0 D

α2
t e2(t) = −0.8e2(t)

C
0 D

α3
t e3(t) = −0.9e3(t)

(15)

Figure 3 depicts the temporal development of the errors. Clearly, synchronization is accomplished when

the errors converge to zero in a reasonable amount of time.

5. Conclusion

The stability of incommensurate fractional-order neural networks is investigated in this research. Several interest-

ing stability criteria are obtained from the introduced characteristic equation. We successfully derive a suitable

stability requirement for incommensurate fractional-order neural networks using the data obtained. We also ex-

tend our conclusions to the synchronization of chaotic incommensurate fractional-order neural networks. Two

numerical examples have been provided to illustrate the effectiveness of the theoretical analysis.
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