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Abstract: In this paper; a simple fractional discrete memristor is designed using discrete fractional calculus, based on

this model a fractional order discrete memristor based chaotic map is constructed. Dynamical behaviour of the
proposed fractional model is investigated numerically. The impact of fractional order and system parameters

on the newly model are illustrated using bifurcation diagrams and phase attractors. It is verified that the

newly model has chaos behaviour.
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1. Introduction

Fractional calculus is a topic which is developed more than 300 years as an extension of differentiation and

integration [1]. In comparison with first order derivative, the fractional order ones have benefits in describing the

long memory property. By memory effects we mean that the states of the fractional systems is determined by all

the previous states. At the same time, during the last decade, attention has been focused on discrete fractional

calculus and fractional difference operators [2]. Recently various complex dynamics residing in fractional order

iterated map, such as chaos, hyperchaos and coexisting attractors. For example, in [3] the hyperchaotic dynamic

of the fractional generalized Hénon map has been investigated. In [4], the chaotic dynamics and combined

synchronization of three two dimensional maps have been illustrated; whereas in [5] Almatroud et al. found rich

chaotic behaviours of a novel two-dimensional (2D) hyperchaotic fractional map with infinite line of equilibrium.

Thanks to this unique characteristics, fractional order iterated map have been deeply studied in academic fields

[6–16].
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Memristor is the forth basic circuit element which was first proposed by Chua in [17], but it was until 2008

that HP laboratory developed the practical application of it [18]. Till now, memristors have been applied in

many fields such as, artificial network and nonlinear circuit [19, 20]. Lately, there has been much work on

constructing discrete memristor [21]. For instance, in [22] several two dimensional discrete maps where established

by introducing memristor into one dimensional maps. In [23], hyperchaotic phenomena was demonstrated in a

discrete memristor coupled logistic map; whereas a 2D non-autonomous discrete memristor-based hyperchaotic

map is analyzed [24]. The discrete memristor in comparison with the classical memristor has simplest form

and fast numerical computation. Nonetheless, studies on the fractional discrete memristor maps are rare in the

literature [25, 26].

The main objective of this article is to investigate the effect of fractional order values on the dynamic behaviour of

discrete memristor based map. The dynamical behaviours of the system is numerically analyzed using bifurcation

diagrams and phase portraits . The rest of this article is organized as follows. In Section 2, we give some primary

preliminaries associated with discrete fractional calculus, and we review the fractional form of discrete memristor.

Hence, we introduce a fractional discrete memrister based chaotic map. The dynamics of the proposed fractional

discrete memristor map in Section 3 will be discussed in detail, including phase plots and bifurcation diagrams.

2. Preliminaries and model description

In order to describe our fractional discrete memristor, some definitions of the discrete fractional calculus are

discussed and the mathematical model of the memristor involving the Caputo-left operator is given.

3. Preliminaries and model description

In order to describe our fractional discrete memristor, some definitions of the discrete fractional calculus are

discussed and the mathematical model of the memristor involving the Caputo-left operator is given.

3.1. Discrete fractional calculus

Definition 3.1.
[27] The fractional sum of order γ for a function g on a time scale Na = {a, a+ 1, a+ 2, . . . } is defined as

∆−γ
τ g (τ) =

1

Γ (γ)

s−γ∑
τ=a

(s− τ − 1)(γ−1) g (τ) , (1)

with s ∈ Na+γ , γ > 0.

Definition 3.2.
[28] The γ-Caputo fractional difference operator for a function g (s) ., is defined as

C∆γ
ag (s) = ∆

−(m−γ)
a ∆mg (s) = 1

Γ(m−γ)

∑s−(m−γ)
τ=a (s− τ − 1)(m−γ−1) ∆m

τ g (τ) , (2)
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where s ∈ Na+m−γ , m = ⌈γ⌉ + 1 and γ ̸∈ N. (s− τ − 1)(m−γ−1) and ∆m
τ X (τ) are the falling factorial function

and the m-th integer difference operator, respectively, which are defined as

(s− τ − 1)(m−γ−1) =
Γ(s− τ)

Γ(s− τ −m+ γ + 1)
, (3)

and

∆mg(s) = ∆(∆m−1g(s)) =

m∑
k=0

(
m
k

)
(−1)m−kg(s+ k), s ∈ Na. (4)

Now, we shall give a theorem which will allow us to derive the numerical formula of the discrete fractional systems.

Theorem 3.1.
[29] For the fractional difference equation{

C∆γi
a x(s) = g(s+ γi − 1, x(s+ γi − 1)),

∆kx(s) = xk, m = ⌈γi⌉+ 1, k = 0, 1, . . . ,m− 1,
(5)

the unique solution of this initial value problem (5) is given by

x(s) = x0(s) +
1

Γ(γi)

s−γi∑
τ=a+m−γi

(s− σ(τ))(γi−1)f(τ + γi − 1, x(τ + γi − 1)), s ∈ Na+m, (6)

where

x0(s) =

m−1∑
k=0

(s− a)k

Γ(k + 1)
∆kx(a). (7)

3.2. The fractional discrete memristor

From the property of circuit theory, memristor is a two terminal device exhibiting a pinched hysteresis for any

non-sinusoidal periodic waveform. According to [17], an ideal memristor model is characterized by
v(t) = M(q)i(t),

dq
dt

= i(t),

(8)

where i is the current, v is the voltage, q is an inner charge variable and M(q) is given by M(q) = a + q(t)2 +

c sin(αn)i(t), in which a, b, c, α are constant. Therefore the mathematical memristor is proposed as
v(t) =

(
aq(t)2 + b+ c sin(αt)

)
i(t),

dq
dt

= i(t).

(9)

Recently, Deng and Li [24] have defined a discrete memristor by discretizing the continuous memristor model (9)

using the forward Euler difference method. The discrete memristor has the following form
v(n) =

(
aq(n)2 + b+ c sin(αn)

)
i(n),

∆q(n) = ∆T i(n),

(10)
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where ∆q(n) = q(n+ 1)− q(n) and ∆T is the iteration step size. According to the numerical simulation reported

in [24], the discrete memristor model can exhibit a pinched hysteris loop when a sinusoidal voltage is applied.

From the iterated equation ∆qn = i(n) it is deduced that q(n) = q1 +
∑n−1

j=1 i(j). Hence,

v(n) =

a

(
q1 +

n−1∑
j=1

i(j)

)2

+ c sin(αn)

 i(n). (11)

From equation (11), it is shows that the discrete memristor has memory effect characteristic similarly to the

discrete fractional calculus, so the previous memristor can be extended to fractional order. Based on this equation

(11), we changed the first difference operator ∆ with the Caputo like difference operator C∆γ
a and got a new 2D

discrete memristor as 
v(n) =

(
aq(n)2 + b+ c sin(αn)

)
i(n),

C∆γ
aq(t) = i(t+ 1− γ),

(12)

where t ∈ Na+1−γ . According to Theorem 3.1, the numerical formula of the fractional discrete memristor (12) is

designed as 
v(n) = i(n)

(
a
(
q(0) + 1

Γ(γ1)

∑n−1
j=0

Γ(n−1−j+γ)
Γ(n−1−j+1)

i(j)
)2

+ csin(αn)

)
,

q(n) = q(0) + 1
Γ(γ2)

∑n−1
j=0

Γ(n−1−j+γ)
Γ(n−1−j+1)

i(j).

(13)

Set the initial condition q(0) = 0, system parameters a = 1.5, b = −1, c = 0.5, α = 0.6, Figure 3.2 shows the

relationship curves v− i between the output current and input voltage for different fractional order γ. This figure

is obtained by adding a sin voltage signal i(n) = Asin(Fn), where A is the amplitude and F is the frequency.

It visually demonstrate that the relationship curves v − i can display the elegant hysteresis loops pinched at the

origin for all the fractional order values.

Figure 1. Numerical simulation of the memristors pinched hysteresis
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3.3. The fractional memristor based 2D map

According to reference [24], the mathematical equation of the discrete meristor system is described as


y(n+ 1) = y(n) + β2x(n),

x(n+ 1) = β1

(
ay(n)2 + b+ c sin(αn)

)
x(n).

(14)

In this work, we extend the integer–order discrete memristor system to the fractional-order case. Herein, the

first-order difference of the discrete memristor system is formulated as


∆y(n) = β2x(n),

∆x(n) = β1

(
ay(n)2 + b+ c sin(αn)

)
x(n).

(15)

Based on this equation (15), we changed the first difference operator ∆ with the Caputo like difference operator

C∆γi
a and got a new 2D discrete memristor system with fractional order, as follows


C∆γ1

a y(t) = β2x(t− 1 + γ1),

C∆γ2
a x(t) = β1

(
ay(t− 1 + γ2)

2 + b+ c sin(α(t+ 1− γ2))
)
x(t+ 1− γ2).

(16)

for t ∈ Na+1−γ , where Na = {a, a+ 1, a+ 2, . . . }, a ∈ N, and 0 < γi ≤ 1, i = 1, 2 are the fractional orders.

4. Numerical analysis

The goal of this section is to explore the chaotic behavior and the complex dynamical characteristics of the

fractional discrete memristor system (16) via numerical simulation for the same system parameters given in the

above section. In order to illustrate these, we shall first give the numerical formula of the fractional discrete

memristor system (16)


x(n) = x(0) + 1

Γ(γ1)

∑n−1
j=0

Γ(n−1−j+γ1)
Γ(n−1−j+1)

β2x(j),

y(n) = y(0) + 1
Γ(γ2)

∑n−1
j=0

Γ(n−1−j+γ2)
Γ(n−1−j+1)

β1

(
ay(j)2 + b+ csin(α(j))

)
x(j),

(17)

In the following, the chaotic behavior and the route to chaos of the proposed macroeconomic system with incom-

mensurate fractional order (16) are carefully analyzed via the computation of bifurcation diagrams and phase

portraits. In particular, the effects of system parameters, and the fractional order values γi, ∀i = 1, 2 on the

dynamics of the model are illustrated in details. All the numerical simulation results are carried on Matlab

software.
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4.1. Bifurcation diagram and phase portrait

Here, we discuss the dynamics of the fractional discrete memristor (16) for different fractional order values γi

when the control parameters are assigned as a = 1.5, b = −1, c = 0.04, α = 0.5, β2 = 1, β1 = 1.72 and the initial

condition is selected as (x(0), y(0)) = (−0.1, 0.1).

When the fractional order γ1 is taken as an adjustable parameter, the bifurcation diagram is shown in Figure 2,

for fractional order γ2 = 1. It is easy to observe that there are chaotic region when for any value of γ1 ∈ (0, 1]. To

illustrate the dynamics of the fractional discrete system (16) better, phase portraits with different values of γ1 are

presented in Figure 3. From Figure 3, we notice that the proposed fractional discrete memristor show different

dynamic chaotic attractors for these corresponding different fractional order values. Moreover, it is concluded that

the fractional memristor has complex dynamics with smallest fractional order values. Similarly, setting fractional

Figure 2. (a) Bifurcation diagram versus γ1 ∈ (0, 1] of the fractional discrete memristor system (16) with γ1 = 1.

order γ1 = 1, Figure 4 shows the bifurcation diagram for order γ2 ∈ (0.95, 1]. When γ1 is used as bifurcation

parameter, the fractional discrete memristor system exhibits chaos behaviour. In addition, when the order is less

than 0.915 the system will diverge. The dynamic of the fractional discrete system is expressed through the phase

portraits as shown in Figure 5. Clearly, the phase portraits in Figure 5 demonstrate the changes in the complex

dynamical behaviours of the fractional discrete memristor map. The above numerical simulation show that the

dynamic behaviors of the fractional mamristor system (16) are distinctly different when the fractional orders are

incommensurate from those in which the integer order.
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Figure 3. (a) Different phase portraits of the fractional memristor discrete system (16) for different fractional order values.

Figure 4. (a) Bifurcation diagram versus γ2 ∈ (0.95, 1] of the fractional discrete memristor system (16) with γ2 = 1.

5. Conclusions

This paper has considered a new 2D fractional discrete memristor map based on the Caputo-type delta difference

operator. Through phase portraits and bifurcation diagrams, the complex dynamics of this proposed map, with

some changes in the incommensurate fractional-order, are discussed. Results have shown that chaos exists in this

fractional-order system and that the type and range of chaotic behavior depend on the fractional order values.
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Figure 5. Different phase portraits of the fractional memristor discrete system (16) for different fractional order values γ2.

Compared with the integer order discrete memristor, the fractional discrete-time one has more complexity when

fractional order values (γi, i = 1, 2, 3) smaller. Due to the rich complex dynamical behaviour, this research can

provide theoretical basis and help for the research in electronic circuit.
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